### IEA EBC Annex 67 – Energy Flexible Buildings



# Characterization of energy flexibility in buildings Main results from SubTask A

Roberta Pernetti



## Characterization of energy flexibility in buildings

#### **Editors**:

- ✓ Armin Knotzer AEE INTEC
- √ Roberta Pernetti (eurac research)
- Contributors: Anna Marszal-Pomianowska, Søren Østergaard Jensen, Minyan Lu, Ala Hasan, Tobias Weiss, Rui Amaral Lopes, Glenn Reynders, Ilaria Vigna, Rune Grønborg Junker, Rui Amaral Lopes, Daniel Aelenei, Henrik Madsen, Krzystof Arendt, Kun Zhang, Tobias Weiss, Adamantios Bompoulas, Peter Engelmann

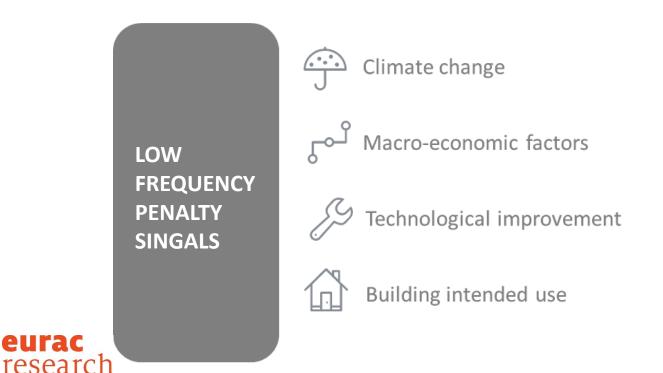




## Characterization of energy flexibility in buildings

- General definition and terminology
- Indicators at single building level
- Indicators at cluster level
- Methodology for assessing the flexibility
- Approach for labelling flexibility
- Sample application of the methodology










## Energy flexibility – common definition

Energy Flexibility represents the capacity of a building to react to one or more penalty signals, without compromising the occupant comfort conditions and taking into account the technical constraints of the building and of its HVAC system.





## **Energy flexibility - Terminologies and Definitions**

Key categories describing the scope of the energy flexible building concept.



#### KEY FORCES:

Mitigation of carbon emissions: Intermittent renewable energy sources in energy system; Mitigation of operational bottlenecks in energy system

#### DEFINITION



#### KEY CHARACTERISTICS:

Ability to manage its demand and generation according to local climate conditions, user needs and requirements of the surrounding grids.

#### **METHODS**



#### KEY CHARACTERISTICS:

Period of activation [minutes/hours], Energy saved and/or used [Wh], Peak Load increase/reduction [W].

#### **ENERGY DEMAND**



#### KEY ELEMENTS:

Space heating; Space cooling; Domestic hot water; Ventilation; Electricity use for plug loads (in some cases appliances include also electric vehicle)

01 02 08 07 03 **ENERGY FLEXIBLE** BUILDING 06 04 05

### **INFRASTRUCTURE**

#### KEY GRIDS:

Power network; District heating; District cooling

### **STAKEHOLDERS**

#### KEY ACTORS:

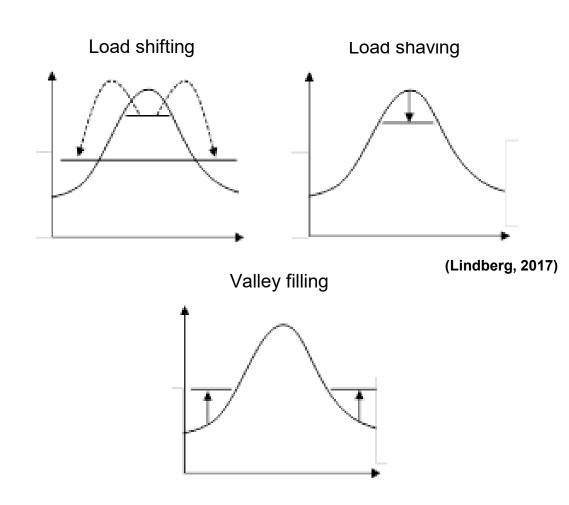
Energy suppliers; Private, commercial and industrial customers; Building managers; Technology providers; The National Regulatory Authority; Aggregators

#### **TECHNOLOGY**

#### KEY ELEMENTS:

Energy storage: thermal and electical; Smart applainces

#### CONTROL


#### KEY ELEMENTS:

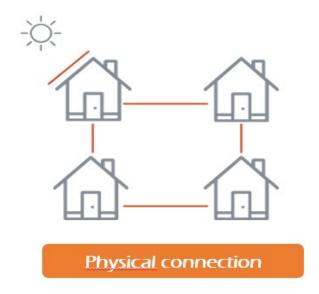
Controller type; Control approach: direct and indirect control; Control objective: Penalty signal; Requirements of the surroundings grids

**Source:** Anna Marszal-Pomianowska

## Indicators for assessing Energy Flexibility

- •Capacity amount of energy that can be shifted per time unit, including the rebound effect as shown in Figure 1)
- Time starting time & duration)
- Cost potential cost saving or energy
  use associated to activating the available
  flexibility)






## Indicators for assessing Energy Flexibility

| Indicator(s)                         | Unit | Author(s)                | Links                                                                                                                             | Input<br>parameter                                              | Output                                                      |
|--------------------------------------|------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|
|                                      |      |                          |                                                                                                                                   |                                                                 |                                                             |
| Flexible demand ( $\Delta p_{k,w}$ ) | kW   | Aduda et al. [35]        | https://www.scopus.com/record/display.ur<br>i?eid=2-s2.0-<br>84959336445&origin=inward&txGid=5cee<br>66e09ddc8bd0bd30b8cc649adb7d | Consumed power of controllable loads such as ventilation system | Load reduction (by flexible load)                           |
| Power Shifting Potential (ΔP)        | kW   |                          |                                                                                                                                   | Price signal and power consumption                              | Potential and<br>efficiency for power<br>increase/ decrease |
| Power Shifting Efficiency<br>(PSE)   | -    | Oldewurtel et<br>al. [5] | https://opticontrol.ee.ethz.ch/Lit/Olde_13<br>_Proc-CDC2013_submitted.pdf                                                         |                                                                 |                                                             |



## Indicators for building clusters



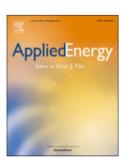
Physical connection: A building cluster is a group of buildings interconnected to the same energy infrastructure, such that the change of behaviour/energy performance of each building affects both the energy infrastructure and the other buildings of the whole cluster.



Market aggregation: common agent or company who can potentially exploit the Energy Flexibility of the whole cluster



Market aggregation


## Rune Grønborg Junker (DTU)





#### **Applied Energy**





#### Characterizing the energy flexibility of buildings and districts



Rune Grønborg Junker<sup>a,\*</sup>, Armin Ghasem Azar<sup>a</sup>, Rui Amaral Lopes<sup>c,d</sup>, Karen Byskov Lindberg<sup>b</sup>, Glenn Reynders<sup>e</sup>, Rishi Relan<sup>a</sup>, Henrik Madsen<sup>a,b</sup>

e EnergyVille, KU Leuven, Belgium



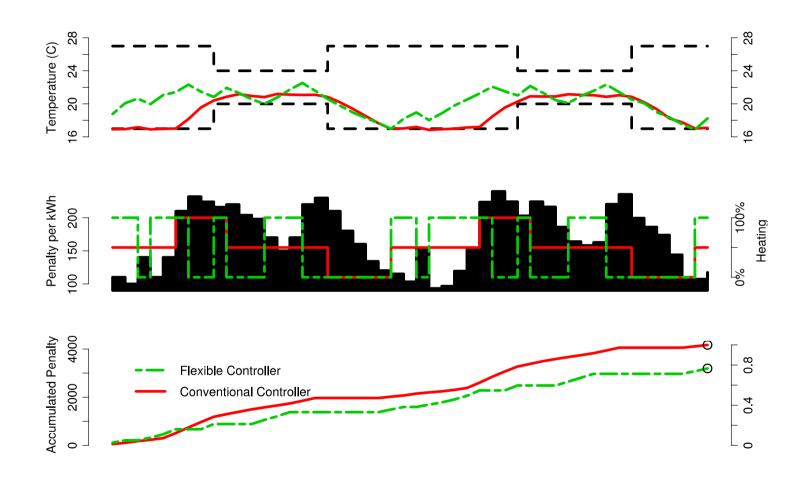
- Energy flexibility characterization
- Example







<sup>&</sup>lt;sup>a</sup> Technical University of Denmark, Denmark


<sup>&</sup>lt;sup>b</sup> Norwegian University of Science and Technology (ZEN-project), Norway

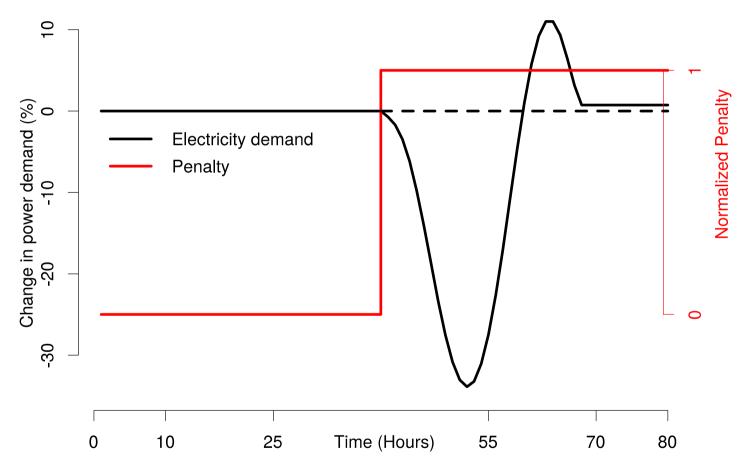
<sup>&</sup>lt;sup>c</sup> Department of Electrical Engineering, Faculty of Science and Technology, Universidade NOVA de Lisboa, Portugal

d Centre of Technology and Systems/UNINOVA, Portugal

## Penalty based setup






Communities Programme

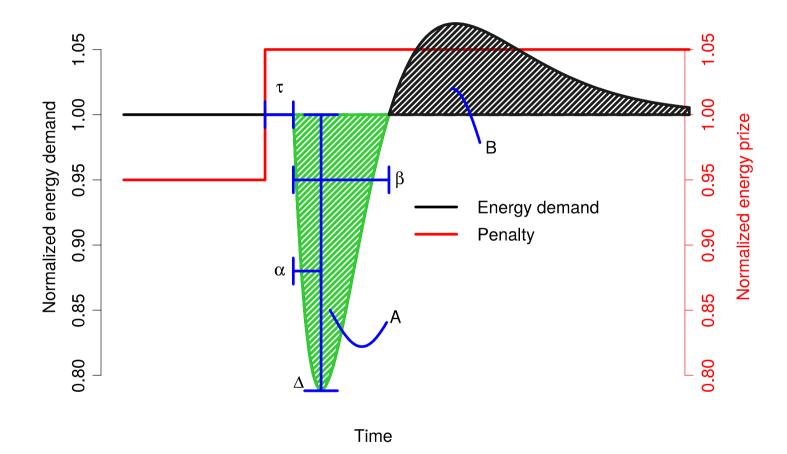




## Flexibility Function of Indoor Swimming Pool





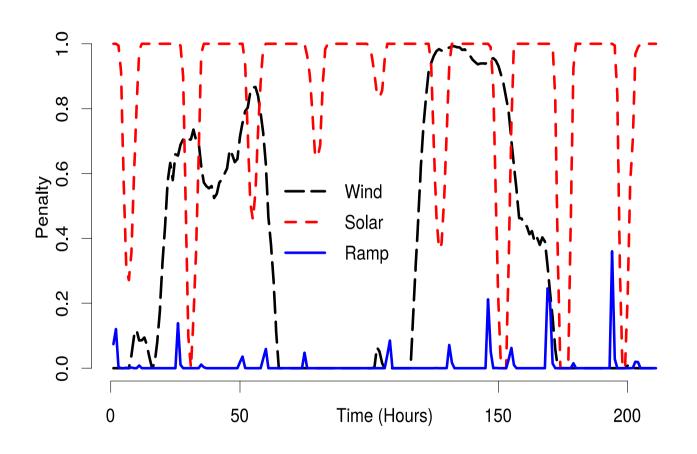





**ANNEX 67** 

## Flexibility Characteristics





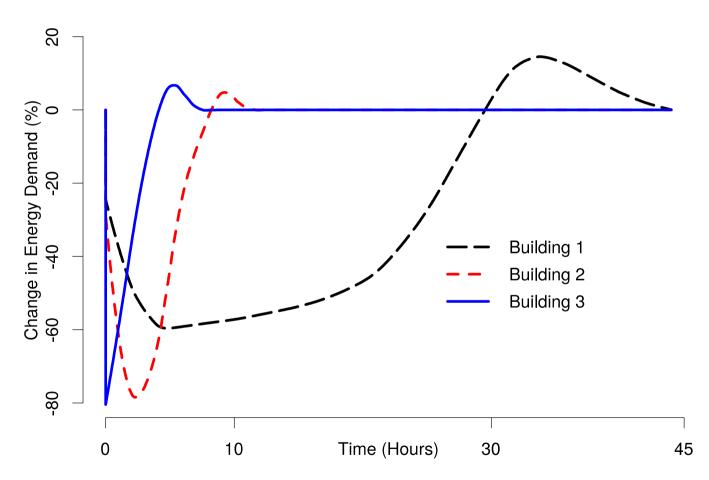





## **Examples of Penalty signals**







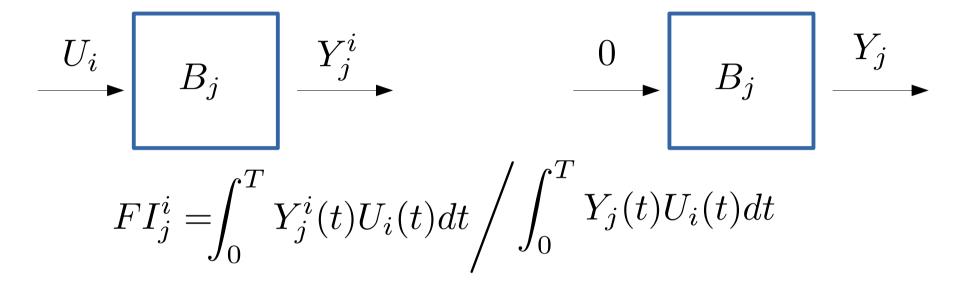



Communities Programme

## Examples of Flexibility Functions










**ANNEX 67** 

## Performance-based Flexibility Index





|            | Wind (%) | Solar (%) | Ramp (%) |
|------------|----------|-----------|----------|
| Building 1 | 11.8     | 4.4       | 6.0      |
| Building 2 | 3.6      | 14.5      | 10.0     |
| Building 3 | 1.0      | 5.0       | 18.4     |





## Conclusions



- Energy flexibility depends on the problems
- The problems depend on time and location
- Different solutions for different problems



