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Preface 
 
The increasing global energy demand, the foreseen reduction of available fossil fuels and the 
increasing evidence of global warming during the last decades have generated a high interest 
in renewable energy sources. However, renewable energy sources, such as wind and solar 
power, have an intrinsic variability that can seriously affect the stability of the energy system 
if they account for a high percentage of the total energy generation.  
 
The Energy Flexibility of buildings is commonly suggested as part of the solution to alleviate 
some of the upcoming challenges in the future demand-respond energy systems (electrical, dis-
trict heating and gas grids). Buildings can supply flexibility services in different ways, e.g. 
utilization of thermal mass, adjustability of HVAC system use (e.g. heating/cooling/ventila-
tion), charging of electric vehicles, and shifting of plug-loads. However, there is currently no 
overview or insight into how much Energy Flexibility different building may be able to offer 
to the future energy systems in the sense of avoiding excess energy production, increase the 
stability of the energy networks, minimize congestion problems, enhance the efficiency and 
cost effectiveness of the future energy networks. Therefore, there is a need for increasing 
knowledge on and demonstration of the Energy Flexibility buildings can provide to energy 
networks. At the same time, there is a need for identifying critical aspects and possible solutions 
to manage this Energy Flexibility, while maintaining the comfort of the occupants and mini-
mizing the use of non-renewable energy. 
  
In this context IEA EBC Annex 67 Energy Flexible Buildings was started in 2015 with the aim 
of gaining increased knowledge on the benefits and services the utilization of the Energy Flex-
ibility in buildings may provide to the future energy networks. The present report is one among 
several outputs from IEA EBC Annex 67. For further information, please visit http://www.iea-
ebc.org/projects/ongoing-projects/ebc-annex-67/. 
 
 
 
 
 
 
Published by Rongling Li, Technical University of Denmark, Denmark 
Cover photo credit: Birgitte Torntoft 
 
Disclaimer Notice: This report is not an official IEA EBC report. Although this publication is 
part of the work conducted within IEA EBC Annex 67 Energy Flexible Buildings, the publica-
tion only reflects the viewpoints of the authors. Neither the authors nor the EBC Contracting 
Parties (of the International Energy Agency Technology Collaboration Programme of Research 
and Development on Energy in Buildings and Communities) make any representation as to the 
adequacy or accuracy of the information contained herein, or as to its suitability for any partic-
ular application, and accept no responsibility or liability arising out of the use of this publica-
tion. The information contained herein does not supersede the requirements given in any na-
tional codes, regulations or standards, and should not be regarded as a substitute for the need 
to obtain specific professional advice for any particular application. 
  

http://www.iea-ebc.org/projects/ongoing-projects/ebc-annex-67/
http://www.iea-ebc.org/projects/ongoing-projects/ebc-annex-67/
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1. Introduction 
This report is a collection of simulation and modelling based studies within the activity 
B.1 of Annex 67: Simulation of energy flexibility in single buildings and clusters of 
buildings. Specifically, this report provides case studies of task B.1.3: Practical poten-
tial of different energy storage and on-site generation solutions in new and existing 
buildings, and task B.1.4: Modelling of possible energy flexibility in single buildings and 
cluster of buildings.  
 
In the Annex 67 working group, different methods have been applied to simulate en-
ergy flexibility potential of building components, single buildings and building clusters. 
We investigated the performance of different storage and generation solutions con-
cerning e.g. power, energy, ramp up and down time, peak shaving, time shifting, un-
certainty, etc. and their deployment in both new and existing buildings. The objective 
of this report is to show cases of these different approaches. In each chapter, one case 
study is described focusing on methodology used and the table below is the summary 
of each study. Each chapter is written based on relevant publications listed in the end 
of the chapter. 
 
The aim of the following case studies is further to inspire peoples who wish to perform 
simulations for determination of the possible energy flexibility of actual buildings.   
 
Author, 
institute 

Simulated 
system 

Method 
and soft-
ware 

Scale  Conclusion  

Rongling 
Li, DTU 

Heat pump 
based floor 
heating 

Data-driven 
grey box 
and statisti-
cal models, 
MATLAB 

Build-
ing 
cluster 

This model can be a tool for 
simulating the building energy 
flexibility potential for dis-
trict/city energy planning. 
When the size of a building 
cluster was scaled up, the un-
certainty became negligible. 

Sarah 
O'Con-
nell, NUIG 

VRF heat 
pump, AHU 
fans, PV, 
2nd life EV 
batteries 

Mathemati-
cal model 
with hu-
man-in-the-
loop, Py-
thon and 
Excel 

Single 
build-
ing 

The scenario modelling valida-
tion at the case study building 
demonstrated accurate predic-
tions for mature technologies 
such as HVAC VRF heat pumps 
and AHU fans.  

Kun 
Zhang, 
PolyMTL 

Electric re-
sistance 
heating, PV 
with battery 
system 

Detailed 
physical 
models, 
TRNSYS and 
MATLAB 

Single 
build-
ing 

The flexibility potential of ther-
mal mass and battery system in 
residential buildings is signifi-
cant, but subject to weather, 
building occupancy and base-
line control strategy.  
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Krzysztof 
Arendt, 
SDU 

Hydronic ra-
diator heat-
ing in a 7-
zone build-
ing 

Grey-box 
(Modelica), 
white-box 
(Ener-
gyPlus) 

Single 
build-
ing 

The dynamic energy pricing 
based on the Nord Pool market 
provided insufficient incentives 
for load shifting in the multi-
objective optimization aimed 
at minimization of discomfort 
and total energy cost. 

Yuekuan 
Zhou & 
Sunliang 
Cao,  
HKPolyU 

Residential 
building 
with hybrid 
energy stor-
ages and 
electric vehi-
cles 

White box, 
TRNSYS 

Single-
family 
house 

22.1% of the cooling load can 
be reduced by BIPVs in Hong 
Kong. Building energy flexibility 
can be enhanced with the im-
plementation of the excess 
REe-recharging strategies and 
the integration of an electric 
vehicle.  

Hussain 
Kazmi, KU 
Leuven 

Heat pump 
hot water 
systems 

Data-driven 
black box, 
Keras in Py-
thon 

Build-
ing 
cluster 

The data-driven models can be 
utilized to both estimate device 
flexibility, and leverage it to im-
prove operational performance 
of a hot water system. Model-
ling performance improves as 
the number of hot water sys-
tems used to gather data in-
creases. 

Zahra Mo-
hammadi, 
TU/e 

A residential 
house with 
heat pump, 
PV  and bat-
tery 

White box, 
TRNSYS 

Single 
build-
ing 

Energy flexible designs can pro-
vide higher self-consumption 
and lower dependency to the 
grid, but are more expensive 
for homeowners. They are, 
however, more future proof in 
accordance to the probable fu-
ture policy scenarios.  

 
Insert a list of abbreviations here 
VRF heat pump: Variable Refrigerant Flow (VRF) heat pump 
AHU: Air handling unit 
PV: Photovoltaic panels   
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2. Development of a data driven approach to investigate the energy 
flexibility potential of building clusters   

 

  
 
 
 
 
 
Institution  
Section of Energy and Services,  
Department of Civil Engineering,  
Technical University of Denmark 
 
 
Contact persons  
Dr., Assistant prof. Rongling Li  
liron@byg.dtu.dk 
+45 45251806 
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2.1 Modelling objective  
In this study, we developed a data driven approach to simulate a generic building cluster that 
could resemble any mix of building archetypes and occupancy. The energy flexibility potential 
of apartment building clusters was estimated by using data from surveys and available statistics 
in Denmark for the worst case scenario, i.e. when the end users do not allow any disturbance 
when they are at home, so that energy flexibility is only available when residents are not at home. 
In this scenario, no energy flexibility is assumed when buildings are occupied, which yields a 
conservative estimation. The uncertainty of the energy flexibility potential due to uncertain oc-
cupancy and various archetypes was quantified for different scales of building cluster. The re-
sulting hybrid-model is a combination of a building model and an occupancy model and includes 
the different factors that influence the potential energy flexibility of buildings.  

The first contribution of the present study is its data driven approach to estimating the energy 
flexibility potential of building clusters containing various archetypes during the time that they 
are unoccupied. The second contribution is the quantification of the uncertainty of the available 
energy flexibility for different scales of building cluster with different numbers of households. 
This approach is generic and scalable can be used to aggregate any number of dwellings. The 
value of the uncertainty quantification is in the planning of the energy supply. A typical case is 
when a grid operator must have information on the reliability of deploying a certain number of 
households and buildings to achieve demand flexibility and balance the grid. Based upon exist-
ing state of the art research on energy flexibility in buildings, the present study goes further: 

1.  The presented model is generic and scalable, implying it can be used to simulate the flexibil-
ity of building clusters with three key features: varying the size of a building cluster, flexible 
combinations of occupancy pattern and building archetypes in each building cluster, and the 
control solutions applied to enable the provision of building flexibility. Previous studies in 
this field have tended to focus on only one or two of these three aspects. 

2.  Each feature of the model is comprehensively modelled and studied based on three different 
data sources, i.e. TABULA, Danish Statistics and Danish Time Use Survey. Models based 
on these three data sources are then closely integrated. This combination of data sources is 
new. On the one hand the study uses Danish information as an example for developing, val-
idating and proving the value of this model; on the other hand, it allows for replicable research 
if data collected from other sites/countries are available. 

2.2 Building and system description  
In this study, heat pumps are assumed to be used for space heating to provide energy flexibility. 
The following principles were applied: 

• Heat pumps can be controlled for flexible electricity usage only during the time period when 
occupants are away, i.e. when the home is unoccupied. This is the worst case scenario, i.e. 
the minimum amount of flexibility offered by a dwelling assuming that end users do not 
allow any disturbance of their energy supply when they are at home, so external control can 
only be applied when they are not at home. 

• The occupancy pattern is considered at the household level. 

The energy flexibility is thus defined as the adjustable range of heat pump power during the 
period the apartments are unoccupied. Due to the stochastic nature of occupancy in households, 
the energy flexibility in this study is a probabilistic distribution with uncertainties instead of a 
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determined number. The uncertainty of energy flexibility can be defined as the degree of disper-
sion of the distribution. Our hypothesis is “The stochasticity of occupancy declines with the 
scaling-up of a building cluster, as does the uncertainty of energy flexibility”. 

2.3 Method and modelling tools 
A data-driven approach was developed to model the energy flexibility of a building cluster, using 
MATLAB. The energy flexibility of a given building cluster is greatly influenced by the physical 
characteristics of the building and the occupancy pattern of individual households. A hybrid-
model approach was used that consists of two parts: Thermal resistance and capacity (RC) mod-
els for the buildings with each building represented as one zone RC model, and occupancy mod-
els for buildings considering occupancy at the household level. The construction of the model is 
flexible, in that a building cluster can in principle be modeled with any mix of parameters such 
as the number of buildings, building types and construction year. Fig. 1 shows the model struc-
ture and simulation diagram. Four steps were used in modelling a single building:  

• RC model of the building was developed based on the TABULA.  

• Statistical data on dwelling size and Danish household size from the Statistics Denmark 
(2017) was then used to estimate the number of households of each size, i.e. one-person, two-
person and three-person in the modelled building.  

• Data from the Danish Time Use Survey (DTUS) 2008/09 was used to generate occupancy 
models of each size of household, which were then used to generate the occupancy model of 
the building according to the number of households of each size the building contains.  

• The RC model and the occupancy model of the building were integrated, then simulation was 
started for this building.  

For simulating a cluster of buildings, the four steps above were applied to all the buildings. After 
the simulation of each building, the decision to end or continue the simulation was, therefore, 
based on whether the building simulated was the last building in the cluster. If it was, then the 
simulation ends; if not, it continues with the next building. This is a generic approach that can 
be used to simulate any dwelling types and to aggregate of any number of dwellings. Each step 
is explained in more detail in the following section.  

 

Figure 1 Flow diagram of quantification of building cluster energy flexibility using a data-
driven approach 



14  
 

 

2.3.1 Occupancy modelling 
Occupancy models were developed using occupancy data from DTUS 2008/09, which consists 
of 9640 individuals and 4679 households. Individuals’ daily activities were logged in two dia-
ries, one for a weekday and another for a weekend day with 10 min intervals starting at 4:00 and 
ending at 3:50 the next day.  

Vacancy modelling for Danish households  
To assign the above probability distribution of vacancy to Danish households, we used the data 
from Statistics Denmark (2017). Table 1 shows the numbers of households of different house-
hold size and different floor area in apartment buildings in Demark in 2017.  

Table 1 Numbers of households of different household size and different apartment size in Danish 
apartment buildings. 

Area(m2) 1 person 2 persons 3 persons 

<50 124660 23316 3249 

50-74 369649 125687 27181 

75-99 266876 206708 73749 

100-124 115590 173653 69038 

125-149 64284 152127 54997 

150-174 34275 103633 40123 

>175 33985 110574 46796 

 

Fig. 2 shows distributions of vacancy from three different sample sizes in the matrix 
𝑃𝑃𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃 𝑡𝑡𝑃𝑃𝑑𝑑𝑡𝑡𝐸𝐸𝑃𝑃𝐸𝐸𝑑𝑑𝑡𝑡𝑃𝑃𝑃𝑃𝑇𝑇 𝑃𝑃𝐸𝐸 𝑣𝑣𝑃𝑃𝑣𝑣𝑃𝑃𝑇𝑇𝑣𝑣𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 

  

Figure 2 Vacancy profile of groups with different number of households.  (a) 64 house-
holds, about 100 people; (b) 321 households, about 500 people; (c) 643 households, about 

1000 people. 

As shown in Fig. 2, the expected value of the vacant percentage does not change with the number 
of households. However, 𝜎𝜎 becomes smaller and smaller with more households aggregated. In 
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other words, the uncertainty of the vacant percentage decreases when the number of households 
becomes larger.  

Vacancy duration estimation using a Kaplan-Meier estimator 
The probabilities of vacancy duration for all three household sizes are shown in Fig. 3. It is the 
aggregation of results from all 144 points (10 minute values). The figure shows the probability 
that a dwelling is vacant at any observation states and onwards. For example, for one-person 
households, if a dwelling is unoccupied at 8:00 (see x-axis), the probability that it is still unoc-
cupied after two hours (see y-axis) is around 80% (colour bar) and after six hours it is around 
60%. 

  

Figure 3 Survival analysis of vacancy for all 144 time points and three household sizes. 

2.3.2 Building modelling 
In this study, grey-box models were developed for building simulation. The grey-box model 
consists of a space heating system, a building RC model (a lumped parameter model) and build-
ing thermal parameters. 
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RC model 
An RC model is a lumped parameter model, regarding a building as a whole for the purpose of 
simulation. There are three states used to describe the development of the indoor temperature. 
The first state 𝑇𝑇𝑖𝑖 (°C) is indoor air temperature. The second state 𝑇𝑇𝑜𝑜𝑜𝑜 (°C) is building envelope 
temperature as influenced by the building heat transfer with outside air. The last state 𝑇𝑇𝑖𝑖𝑜𝑜 (°C) 
is the inner walls temperature that reflects the influence of the buildings’ thermal inertia on the 
indoor temperature. Fig. 4 shows the structure of the model used in this study.  

 

Figure 4 4R3C grey-box model structure. 

 Ti (°C) is the indoor air temperature, Tom (°C) is the building envelope temperature, Tim (°C) is 
the inner walls temperature, Ci (J/K) is the thermal capacity of the indoor air, Com (J/K) is the 
thermal capacity of the building envelope, Cim (J/K) is the thermal capacity of the inner walls, 
Qfloor
rad−im (W) is the heat transfer though radiation between the floor and the inner walls, Qfloor

rad−om 
(W) is the heat transfer though radiation between the floor and the envelope, and Qfloor

conv  (W) is 
the heat transfer though convection. 

Building thermal parameters 
Using the developed RC model and the space heating model, the building model was established. 
Based on the TABULA database, representative building types can be extracted for case study-
based analysis. We chose only apartment blocks for the case study, as they have a large energy 
demand. Table 2 shows the U values of the building envelope of apartment blocks used in the 
case study. 

Table 2 U values of building envelopes, data source: TABULA 2015. 

Year of construction Energy standard 
U values (W/(m2K)) 
Roof Wall Floor Window 

1961–1972 
Existing state 0.33 0.51 0.99 2.7 
Usual Refurbishment 0.12 0.34 0.24 1.4 
Advanced Refurbishment 0.09 0.33 0.14 0.9 

1979–1998 
Existing state 0.19 0.34 0.19 2.7 
Usual Refurbishment 0.12 0.34 0.19 1.4 
Advanced Refurbishment 0.09 0.34 0.19 0.9 

2011~ 
National minimum requirement 0.1 0.18 0.14 1.05 
Improved standard 0.1 0.16 0.1 0.8 
Ambitious standard/NZEB 0.08 0.16 0.08 0.8 
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2.3.3 Estimating number of households and generating occupancy model for the building  
For each apartment block, the number of households of each size, i.e. one-person, two-person 
and three-person, were estimated according to Statistics Denmark 2017. The dwelling size of an 
apartment block in Denmark approximately follows the normal distribution shown in Equation 
(1). 

𝐷𝐷𝐷𝐷𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎~𝑁𝑁(𝜇𝜇,𝜎𝜎2), 𝜇𝜇 = 79,𝜎𝜎 = 25 (1) 

For a one apartment building, a random dwelling size can be generated from the above normal 
distribution. Then, the number of households can be calculated by the following division for-
mula. 

𝑁𝑁ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎ℎ𝑜𝑜𝑜𝑜𝑎𝑎 = 𝐸𝐸𝑃𝑃𝑑𝑑𝑇𝑇𝑡𝑡( 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎
𝐷𝐷𝐷𝐷𝑎𝑎𝑜𝑜𝑜𝑜𝑖𝑖𝑎𝑎𝑎𝑎 𝑆𝑆𝑖𝑖𝑆𝑆𝑎𝑎

) (2) 

Next, the household size can be estimated according to the distributions of household sizes in 
different dwelling areas, as shown in Table 1. 

Finally, an occupancy model of the building can be generated according to the estimation result 
of number of households of different sizes using the method in 2.3.1. In the timeline of one day, 
there are 144 time points with a 10-minute interval. For each point, the mathematical expecta-
tion, 𝜇𝜇 + 1.96𝜎𝜎 and 𝜇𝜇 − 1.96𝜎𝜎 of vacancy percentage was determined. In the simulation of this 
building, the occupancy model was then integrated with the building model. 

2.3.4 Simulation of energy flexibility     
The estimation of the energy flexibility potential of a building cluster was performed in three 
steps: (i) upward modulation in which heat pumps are turned on at max. power when buildings 
are unoccupied, (ii) downward modulation in which heat pumps are turned off when buildings 
are unoccupied, and (iii) subtract power of heat pumps under downward modulation from the 
power of heat pumps under upward modulation to obtain energy flexibility potential.  

The uncertainty of the energy flexibility potential was quantified for building clusters with dif-
ferent scales, to be specific, different numbers of buildings and different numbers of households. 
This is because the uncertainty of occupancy varies when the number of households changes. 
The simulation was run for one day with typical winter weather conditions in Copenhagen.  

2.4 Results  

2.4.1 Energy flexibility potential of building clusters with different construction year 
Fig. 5 is an example showing how the indoor air temperature varies under the extreme conditions 
that all households are vacant for six hours from 9:00 to 15:00. Heat pumps are switched on or 
off from 9:00 to 14:30 for energy flexibility, but back to normal operation 30 minutes before 
residents return, to ensure that the room temperature is within the comfort range when residents 
return.  

2.4.2 Energy flexibility potential of building clusters with different construction year 
The heat pump power curve of apartment blocks with three different construction years is shown 
in Fig. 6, where the gap between the red line and the blue line is the building energy flexibility 
potential. In Fig. 6, curves of the three building types indicate that, with a similar number of 
residents and number of households, the energy consumption by heat pumps in new buildings 
with better insulation is much less than it is in old buildings due to a much lower heat demand. 
However, old buildings with worse insulation have larger energy flexibility potential (Fig. 7). 
Fig. 7 shows the subtraction of the red curve and the blue curve in Fig. 6. 
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Figure 5 Indoor air temperature under different control modes. 

 

 

Figure 6  Heat pump power curve of building cluster with different construction year.  
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The red curve indicates the operation of heat pumps switched on during a vacancy period, 
while the blue curve indicates heat pumps switched off when the household is vacant. 

 

 

Figure 7 Energy flexibility potential of building cluster with different construction years 

2.4.3 Uncertainty of energy flexibility potential of building clusters 
For the occupancy model, with the scaling-up of number of residents and number of households, 
the mathematical expectation is almost invariable while 𝜇𝜇 + 1.96𝜎𝜎 value and 𝜇𝜇 − 1.96𝜎𝜎 value 
gradually converge to the mathematical expectation. On condition that heat pumps are switched 
on or off for energy flexibility according to occupancy patterns, the mean value of the energy 
flexibility potential is determined by the mathematical expectation while the uncertainty of the 
energy flexibility potential is determined by 𝜇𝜇 + 1.96𝜎𝜎 value and 𝜇𝜇 − 1.96𝜎𝜎 value. The uncer-
tainty of the building energy flexibility potential is defined as follows: 
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𝐸𝐸𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

% (3) 

Where 𝐸𝐸𝐸𝐸𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎 is the mean value of the energy flexibility potential at any time, which is also the 
mean value of the adjustable range in Fig. 8. 𝐸𝐸𝐸𝐸𝑜𝑜𝑎𝑎𝑚𝑚  and 𝐸𝐸𝐸𝐸𝑜𝑜𝑖𝑖𝑎𝑎 are the maximum value and 
minimum value of the energy flexibility potential in Fig. 8. 
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In Fig. 8, it can be seen that the uncertainty declines with the scaling-up of a building cluster. 
When the number of households is more than 600 and the number of residents is larger than 
1000, the uncertainty almost disappears, and the energy flexibility potential can be accurately 
estimated. The uncertainty is less than 10% when the number of households is around 700. In 
addition, a building cluster with 1102 households and 1767 residents has energy flexibility with 
less than 6% uncertainty. 

 

 

Figure 8 Energy flexibility and its uncertainty with scaling-up of apartment blocks.  
Existing state, construction year: 1961~1972. 

 

2.5. Conclusion 
In this study, a generic energy flexibility model was developed in MATLAB for the simulation 
of any dwelling types and for the aggregation of any number of dwellings with high computing 
speed, usually only a few minutes. Heat pumps were controlled for flexible energy usage when 
occupants were absent. The heat pump power adjustable range was defined as the energy flexi-
bility during each period. At times when the home was occupied, the indoor temperature was 
maintained within a comfortable range.  

The uncertainty of the building energy flexibility potential caused by the stochasticity of occu-
pancy patterns was evaluated. It was found that when the size of a building cluster was scaled 
up, the uncertainty became negligible. In other words, the uncertainty of the occupancy de-
creases when the aggregated number of residents increases. The uncertainty of energy flexibility 
was less than 10%, when about 700 households were aggregated. In comparison with new build-
ings with good thermal insulation, older buildings have higher energy flexibility potential. In 
addition, it was found that the older the building is, the higher the energy flexibility it has due to 
a higher energy demand.  

This model can be a tool for simulating the building energy flexibility potential for district or 
even regional level energy planning when using the available flexibility to address various chal-
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lenges caused by fluctuations in the power available from renewable energy sources. The meth-
ods developed are being considered for a number of practical applications, e.g. 1) to support the 
design of flexibility service products in electricity and heat markets; 2) to help building demand 
aggregators to create a building-based portfolio that has a statistically steady and predicable per-
formance relation to flexibility control, operation, management and trading; and 3) to facilitate 
city planning and network planning by providing improved prediction of building clusters’ en-
ergy profiles, since the original energy profiles are dramatically influenced by using the flexi-
bility of buildings for different purposes.    
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3. Flexibility Analysis for smart grid demand response  
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3.1 Modelling objective  
The aim of this study is to generate scenario models to define the flexibility ranges for contracts 
between buildings, aggregators and grid operators. Flexibility ranges are then visualised through 
scenario generation. 

Contracts with aggregators, Transmission System Operators (TSOs) and Distribution System 
Operators (DSOs) are based on committing to a defined range of flexibility. For single source 
applications, for example, running a backup generator, flexibility is easily assessed, but for 
buildings or sites where multiple sources of flexibility are available, determining what can be 
offered becomes more complex. The building or site manager/operator needs to know the flexi-
bility range, firstly to decide if participation is appropriate and if it is, to support them in selecting 
the most appropriate demand side management or flexibility program to participate in. Aggre-
gators wish to minimize up front time and effort when assessing sites for aggregated portfolios. 
Having a fast, easily implementable and standardized modelling approach is an enabler for build-
ing and site managers, aggregators and grid operators. 

3.2 Building and system description  
The building that is modelled in this study is the Gateshead College Skills Academy for Sustain-
able Manufacturing and Innovation (SASMI). It is a 5,700 m2 building consisting of classrooms, 
offices and workshops and located adjacent to the Nissan manufacturing site in Sunderland, UK. 
The peak power load of the building is approximately 140 kW and its base load at evenings and 
weekends is between 20 kW and 40 kW.  

The systems that are modelled for flexibility in the SASMI building are Nissan Leaf second life 
Electric Vehicle (EV) batteries (Nissan are a partner in the ELSA project), a 50 kWp Photovol-
taic (PV) array and Heating, Ventilation and Air Conditioning (HVAC) loads in the building. 
The 3 x 16 kWh second life EV batteries have a combined system capacity of 48 kWh. The first 
life capacity of the EV batteries, when they were newly installed in the Electric Vehicle, was 72 
kWh. The HVAC loads in the building which have the capability to provide flexibility include 
variable speed fans in Air Handling Units (AHUs) and a Toshiba Carrier Variable Refrigerant 
Flow (VRF) heat pump system.  

3.3 Method and modelling tools 
Scenario modelling using flexibility characterization is the proposed method. The method de-
veloped transforms data into actionable information using flexibility characterization and a sim-
ple mathematical model. The flexibility characterization process is represented as a flowchart 
through which to navigate the avalanche of data available for buildings to select flexible systems 
early on, identify the key parameters of each system and avoid unproductive analysis of systems 
which are not relevant. The mathematical model uses the key parameters to calculate flexibility 
as a percentage of total load. The method is designed to be implemented by technical individuals 
who are not experts in energy or flexibility analysis, thereby overcoming the barrier to partici-
pation in demand response whereby flexibility is either underestimated by a cursory examination 
or a comprehensive evaluation by a domain expert is expensive and time consuming. The output 
of the modelling process is scenario generation, a means of visualizing the available flexibility 
against a standard daily load profile, detailed in section 1.4 Results. 

To implement the flexibility characterisation, a flexibility audit, structured using elements of the 
energy audit standard ISO 50002:2014 is recommended. Activities such as data collection, site 
visit, analysis and reporting, based on a Type 2 audit, greatly assist in gathering the necessary 
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information to implement the model. A Type 2 energy audit is a detailed audit which is more 
rigorous than a walk-through assessment and includes a detailed analysis of energy systems in 
the building and operating conditions at the site. Opportunities for improvement are identified 
and there is a comparison with benchmarks. Using an audit structure reduces the specialized 
expertise needed to implement the characterisation while addressing the key objectives of the 
flexibility modelling. In addition, existing flexibility assessment methods including (Ma et al. 
2013) (Alcazar-Ortega et al. 2015) (Siebert et al. 2015) were reviewed, identifying gaps which 
the method addresses.  

The flexibility characterisation process is shown in Figure 9. Even for a small-medium sized 
commercial building there are 1,000s of specification documents and equipment data sheets, 
100s of drawings and 1,000s sensors, equipment parameters and meters continuously generating 
hundreds of thousands of values every day. The objective of the flexibility characterisation pro-
cess is the elimination of non-flexible systems and identification of key parameters for flexible 
storage, on-site generation and loads. These key parameters are then captured in a flexibility 
matrix. Starting with the load branch of the process, for a load to be flexible, it must be shedda-
ble, controllable and acceptable. Sheddable means can a load be reduced or turned off, control-
lable means controlled by an automated system such as a Building Management System (BMS) 
and acceptable means is it acceptable to the building occupants, manager and or owner to reduce 
or turn off the load e.g. if it impacts the thermal comfort of occupants.  If the answer to the 
question ‘is it sheddable, controllable AND acceptable’ is not ‘yes’ for all three, then the load is 
not flexible and the assessor moves on to the next load, storage or renewable generation. Re-
newable generation may not be controllable but it is possible to predict its output to reduce the 
net power import to the site and so it may be considered flexible. 

 

Figure 9 Flexibility Characterisation Process. 
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An example of the application of the flexibility characterisation process is shown in Figure 9. A 
Variable Refrigerant Flow (VRF) heat pump system is a type of HVAC load. It is possible to 
reduce the load over a short period; therefore it is Sheddable. These are typically controlled by 
a dedicated manufacturer’s controller or a Building Management System (BMS) so it is Con-
trollable. It must be determined if it is Acceptable, to the building operator to reduce the VRF 
power consumption by reducing or increasing temperature set points or by displacing electrical 
heating by gas fired systems. HVAC loads, including VRF are generally shiftable, but it may be 
partly curtailable. E.g. if thermal energy is reduced during a flexibility event, there is often a 
rebound effect afterwards where more energy is needed to restore the building to the temperature 
set point. However, if the duration of the event is short, it may be possible to curtail the load 
with minimal impact on indoor air temperature, depending on building thermal mass and air 
changes per hour, and thereby avoid rebound. 

The parameters gathered through this process are then input into the flexibility matrix, and the 
process is repeated for other loads, storage and on-site generation sources on site. The parameters 
in the flexibility matrix may include flexible power [kW], duration of event [h], Time In Ad-
vance (TIA) notification [h], minimum time between events [h], pre-load (P, t) [kW, h], rebound 
(P, t) [kW, h], load availability [days, h], financial or other shed time [s/min] and time frame 
when requests are permitted. A two-dimensional representation of the flexibility matrix is cap-
tured using Flexibility System Parameter tables as shown in Figure 10. 
 
The models are calculated as follows: the total flexibility at any given time interval, j, is the sum 
of all the individual sources i, which have flexibility in that time interval. Flexibility, f, is ex-
pressed in power (kW or MW). 

𝐸𝐸𝑇𝑇𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜�𝑡𝑡𝑗𝑗� =  �𝐸𝐸𝑖𝑖�𝑡𝑡𝑗𝑗� 
𝑎𝑎

𝑖𝑖=1

                     (1) 

  
To calculate flexibility as a percentage of peak load, F, the following formula is used: 
 

𝐸𝐸 =  �
𝐸𝐸𝑇𝑇𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜�𝑡𝑡𝑗𝑗�
𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑃𝑃

�  . 100                   (2) 

 
Where Ppeak is the peak power load for the building in kW or MW and fTotal is as defined in 
equation (1). Human reasoning is required to evaluate the flexibility of each source for a specific 
timeframe from the flexible system parameters, a step which may be automated in future. The 
flexibility, F, for storage, generation and loads for specific time frames are then plotted as a 
percentage of peak power load against typical daily profiles for the building as shown in section 
3.4 Results. This is performed both for individual energy systems and a combination of systems.  
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Figure 10 Populating a 2D representation of the Flexibility Matrix. 
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3.4 Results  
The quantity, in power (kW) and duration (time) of flexibility available are visualized through 
scenario generation. Two sets of sample scenarios for flexibility are generated. The first is for a 
one-hour flexibility event, the second is a four-hour flexibility event. Flexibility is denoted as a 
percentage of total peak load. The scenarios are then validated by conducting one-hour and four-
hour experiments in the SASMI building. The recorded data was analysed to compare it against 
the modelled scenarios.  

The one-hour flexibility event scenario, shown in Figure 11, illustrates the percentage of total 
load which the storage, on-site generation and loads have the capability to provide in response 
to a request for services from an aggregator or grid. If only the battery system was used, it could 
provide up to 26% flexibility as a percentage of the building peak load. PV combined with a 
HVAC reduction in summer gives flexibility of 19%. The HVAC reduction consists of decreas-
ing the load on the Variable Refrigerant Flow (VRF) heat pump system and curtailing Air Han-
dling Unit (AHU) fan speed. Combining both of these scenarios gives a total modelled flexibility 
of 45%.  

 

 
Figure 11 Scenario Generation for 1 Hour event showing Battery system only on left and 

PV (hatched) with HVAC reduction on right: VRF (purple) and AHU fans (grey). 

 

The four-hour flexibility event scenario, shown in Figure 12 illustrates the flexibility that may 
be achieved using the same sources over a longer time frame. The battery system can achieve 
8% flexibility by itself. On the right hand side of the figure, HVAC load reduction can achieve 
8% while adding PV generation results in a total flexibility of up to 20% in summer.  

 

 
Figure 12 Scenario Generation for 4 Hour event showing Battery system only on left and 

PV (hatched with HVAC reduction on right: VRF (purple) and AHU fans (grey). 
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Analysis: In the one-hour scenario, the contribution of the battery is most significant. However, 
for the four-hour scenario, the contribution of the battery is limited by its capacity (kWh) and as 
this is spread over a four-hour period, the amount of flexibility it can provide is much reduced. 
In contrast, for the four hour event, the contribution of HVAC systems is much more significant 
than in the one hour event as they double the flexibility available from 8% (battery only) to 16% 
(battery & HVAC).   

In summary, the results demonstrated:  

• the capacity and maximum discharge rate of the battery system had a significant impact 
on the available flexibility, particularly for the one hour scenario;  

• during longer events, such as the four-hour scenario, load sources such as HVAC be-
come much more significant, with a flexibility range more than double that of the battery 
system.  

Validation of the results was conducted at the SASMI building for both the one hour and four-
hour scenarios. The validation profiles are strongly influenced by volatility in the PV output 
causing significant fluctuation in the overall load profile. This creates noise in the recorded data, 
requiring analysis to extract the actual flexibility achieved.  

Validation of the one-hour scenario is shown in Figure 13. The PV and HVAC systems gave a 
flexibility of 18 % of peak power load as shown in Figure 13. This was very close to the modelled 
flexibility of 19 %. A slight drop in PV output was compensated by larger than predicted HVAC 
load reductions. The AHU fan flexibility gave a steady load reduction whereas the VRF system 
was more volatile. Overall, intermittency in PV output created significant variations in the over-
all load profile for power imported from the grid (P_Main_kW).  

 

 
Figure 13 Validation of one-hour scenario for PV and HVAC. Modelled flexibility is 

shown on the left and validation results are shown on the right. 

 

The battery system provided a flexibility of 17% of peak load as shown in Figure 14. This was 
lower than the modelled flexibility of 26 %. The reason for this is the 2nd life battery system 
installed in the SASMI building is an early prototype at technology readiness level (TRL) 5/6, 
and of the three 2nd life EV battery modules in the system, only two were operational at any 
given time. The individual maximum discharge rate for each EV battery is 12 kW, giving a total 
maximum discharge rate of 24 kW which is equivalent to 17 % of the building peak load of 140 
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kW. If the predicted flexibility was reset to the actual available capacity, the achieved flexibility 
would be equal to the modelled flexibility.    

 
Figure 14 Validation of one-hour scenario with Battery system only. Modelled flexibility is 

shown on the left and validated results are shown on the right. 

 
A summary of the validated results is shown in the tables below. 
 

Table 3 Summary showing Modelled and Validated Flexibility Results for 1 Hour Scenario 
Model. 

1 Hour 
Scenario HVAC & PV Battery Total 

Modeled 
Flexibility 19 % 26 % 45 % 

Validated 
Flexibility 18 % 17 % 35 % 

 

Table 4 Summary showing Modelled and Validated Flexibility Results for 4 Hour Scenario 
Model. 

4 Hour 
Scenario HVAC & PV Battery Total 

Modeled 
Flexibility 20 % 8 % 28 % 
Validated 
Flexibility 12 % 5 % 17 % 

 

Validation of the four-hour scenario for PV and HVAC loads gave a flexibility 12.5 %, shown 
in Table 4, lower than the modelled value of 20%. The reason for this was a significant drop in 
PV output during the flexibility event. For the battery system only, validation of the four-hour 
scenario resulted in almost half the predicted flexibility. The scenario gave an 8% flexibility 
whereas during the validation, the battery system only achieved 5%. The reason for this is the 
reduced battery system capacity due to only two of the three EV batteries being in operation at 
the time of validation.  

Modelling of predicted PV output is challenging as it is highly dependent on extremely localised 
weather conditions e.g. a cloud passing the PV panel. This raises questions around PV volatility 
& its reliability as a source of flexibility. In addition, it supports the case for electrical storage to 
implement PV power smoothing to avoid intermittent demand creating issues on the grid side. 

17%
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However, if the battery storage system is engaged in PV power smoothing, it may not be avail-
able for flexibility events such as demand response. 

Accurate modelling of battery systems requires reliable system specification which is challeng-
ing when dealing with a prototype battery management system at TRL 5/6. A mature technology 
at TRL 9 will give certainty around the available flexibility of second life battery systems for 
modelling and system operation.  

Benchmarking: To understand how much flexibility is typical for a building of this type with 
similar systems providing flexibility, benchmarking is required. Standardized benchmarks, sim-
ilar to CIBSE TM46 for energy consumption in buildings, have not yet been developed for flex-
ibility in buildings. To benchmark the results, a number of other demonstration projects were 
reviewed (Picault et al. 2015) (Piette et al. 2006) (Grid4EU 2016) (Siebert et al. 2015). Of these, 
the two most relevant for the building in this example were chosen. Benchmark 1 is a Californian 
study in the US which measured HVAC load reduction in 28 buildings participating in a utility 
demand response program (Piette et al. 2006). The study was chosen as the sample size is sig-
nificant and the HVAC systems were used in this example. Benchmark 2 is a demonstration 
project involved 8 pilot sites, battery storage and a PV array in France (Siebert et al. 2015).  The 
pilot sites each provided a single load, heating in buildings or pumps in industrial sites. The PV 
and storage elements were similar to the example site presented here but were managed centrally 
by an aggregator, instead of the building managing its own renewable generation and storage. 
As before, flexibility is denoted as a percentage of total peak load. 

 

Table 5 Benchmark Comparison for Example Building 

Benchmark 1 
[CA, USA; 28 Buildings] 

(Piette et al. 2006) 

Benchmark 2 
 [FR; Battery, PV & 

Loads] 
(Siebert et al. 2015) 

Validated  
Flexibility 

(%) 

Duration 
(h/min) 

Average 7 – 9 % Min  ~7 % 4 % - 12.5 % 4 h 

Max 28 - 56 % Max ~ 18 % 35 % 1 h 

 

The flexibility modelled and validated for the Example building, SASMI, is within the range of 
Benchmark 1 and above Benchmark 2 as shown in Table 5. This means that the flexibility the 
Example building can provide is typical or slightly better than a building of this type with similar 
systems used for flexibility (HVAC, PV & Battery).   

3.5 Conclusions 
A standardized scenario modelling approach for early stage flexibility assessment in buildings 
was developed and validated. It is an enabler for building and site managers, aggregators and 
grid operators to effectively navigate through the 1,000s of specification documents and equip-
ment data sheets, 100s of drawings and 1,000s of data points to generate scenario models which 
predict the available flexibility in the building. The scenario modelling proved to be accurate for 
mature technologies such as the HVAC systems but high frequency variations in PV output and 
some technical issues with the prototype battery system resulted in the total validated flexibility 
differing from the modelled flexibility.   
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Future work in the development of standardized benchmarks for a range of building types e.g. 
apartments, hospitals, offices etc. would be a welcome development.    
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4.1 Objective  
This section aims at investigating the energy flexibility of typical Canadian homes. The energy 
flexibility potential is studied separately for passive thermal storage i.e., the building thermal 
mass and photovoltaic solar system with or without battery.  

4.2 Building and system description  
The selected residential building for the present study are the twin houses at Canadian Centre 
for Housing Technology (CCHT), which were built in 1998 according to the Canadian R-2000 
building standard [1]. They represent the common three-story single-family homes with a base-
ment, the first floor (living zone) and the second floor (sleeping zone). The construction are 
typically North-American with wood frame structure and brick veneer as exterior finish. The 
thermal mass is relatively low compared to European heavy-weight houses. The time constant 
for a response to heating power is in the order of 18 h. A brief summary of the CCHT houses 
are presented in Table 6 [2].  

 

Table 6 Brief summary of CCHT houses. 

Feature Details 

Livable area 210 m2 (2 stories) 

Insulation 

Attic:  R=8.6 m2K/W; 

Walls: R=3.5 m2K/W; 

Rim joists: R=3.5 m2K/W 

Basement 

Poured concrete, full basement 

Floor: concrete slab, no insulation 

Walls: R=3.5 m2K/W in a framed wall 

Windows 
Low-e coated, argon filled windows 

Area: 35 m2 total, 16.2 m2 south facing 

Airtightness 1.5 h-1 @ 50 Pa 

 

The heating system investigated in this work is an electric resistance heating system, commonly 
seen in the Canadian province of Quebec. The PV panels and battery bank is sized according to 
the available south-facing roof area and on an autonomy of 1½ day. The PV array nominal power 
is 16.1 kW (three 270 W panels are wired in series at each string) and the storage capacity of the 
battery bank is 61.2 kWh (48 V-1275 Ah). Twenty-four sealed advanced glass mat (AGM) lead 
acid battery modules, type Rolls (model S2-1275), 2V 1275Ah, are connected in series. 

4.3 Method and modelling tools 

4.3.1 Models 
A detailed building model is implemented in TRNSYS [3], which is calibrated using measured 
data. The CWEC weather file for Montreal, Canada is used in the study. 

To investigate the general energy flexibility of buildings, it is assumed that the demand response 
(DR) event can occur at any hour of the year. To assure that each DR event is independent, one 
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simulation corresponds to only one event. Matlab was used to run the simulation in batches for 
different DR events in different scenarios. Note that for the building thermal mass case, only the 
heating season is simulated starting from October 15th to April 29th (altogether 196 days); in 
other words, the DR event happens at 4704 different hours (196 × 24 hr.). For the PV system, 
the DR event happens for all 8760 hours. 

Building thermal mass 
The electric baseboard heating system was modeled using the idealized heating in TRNBuild; 
therefore, the setpoint control was also idealized in the simulation. Simple setpoint temperature 
modulation is investigated. The setpoint control scenario during the DR event is [4]: 

• Decreasing the reference setpoint by 2 °C for the downward flexibility; 

• Increasing the reference setpoint by 2 °C for the upward flexibility. 

The reference setpoint case represents a typical setpoint profile as shown in Table 7.  

 

Table 7 Reference setpoint scenario 

Zone Reference setpoint DR event 

First floor 21 °C 2 °C change 

Second floor 21 °C 2 °C change 

Basement 17 °C Not adjusted 

 

PV system with battery 
The detailed grid-tied solar system is modeled in TRNSYS, which is composed of PV panels, 
charge controller, inverter and battery bank. The solar system is coupled with the detailed build-
ing model with the all-electric HVAC system and water heater.  

Two rule-based control methods are investigated in the study, which represent two extreme op-
eration modes typically available in commercial grid-tied inverters: grid-support mode (PV pri-
ority) and Uninterrupted power system (UPS) mode. 

In the grid-support mode, the system supplies the required load by prioritizing the electricity 
generation sources in the following order: 1st. PV panels, 2nd. Battery and 3rd Grid. This reduces 
the dependency on the grid, but it will not necessarily minimize the electricity bill since dis-
charging the battery during off or mid peak hours is not always economically beneficial. 

In the UPS mode the primary task is to keep the battery fully charged in order to back up the 
grid for supplying the load over interruption or instability. Utilizing this mode of operation let 
the households have access to the electricity over blackout as well as supporting the sensitive 
AC loads. In this mode, since the battery bank is always fully charged, the surplus electricity is 
either dumped or exported to the grid. Therefore, the system is unable to store the extra-gener-
ated electricity during the day to meet the load in absence of solar energy. It is interesting to note 
that, since the battery is not used under normal operation, this references scenario is very close 
to what a PV system without battery would provide. 
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4.3.2 KPIs 
To quantify the energy flexibility, we introduce the four indices below in the present study. 
Figure 15 presents a conceptual energy flexibility of buildings with a downward flexibility event 
happening from 8 am to 10 am. 

 
Figure 15 Flexible energy demand of buildings (downward flexibility) with 𝐸𝐸𝑓𝑓: flexible en-
ergy; 𝐸𝐸𝑎𝑎𝑟𝑟: rebound energy; 𝑃𝑃𝑓𝑓𝑜𝑜𝑎𝑎𝑚𝑚: maximum flexible power; 𝑡𝑡𝑎𝑎𝑎𝑎: duration of demand re-

sponse event. 

 

Flexible energy 𝐸𝐸𝑓𝑓 

The flexible energy quantifies the amount of energy that has been shifted compared with the 
reference scenario, either downward or upward. It indicates the decreased or increased energy 
usage during the DR event. The cyan shaded area shown in Figure 15 indicates the downward 
flexible energy amount during a DR event. 

𝑬𝑬𝒇𝒇 = � �𝑃𝑃𝑡𝑡𝐸𝐸 − 𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸�𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡𝐸𝐸

0

 (1) 

Note that 𝑃𝑃𝑎𝑎𝑎𝑎 and 𝑃𝑃𝑎𝑎𝑎𝑎𝑓𝑓 in the equation are electric power, unlike the terms shown in Table 6 are 
thermal. This index also shows the amount of shifted power in average during the DR duration 
(the average shifted power equals 𝐸𝐸𝑓𝑓  divided by the time of DR duration 𝑡𝑡𝑎𝑎𝑎𝑎). 

Rebound energy 𝐸𝐸𝑎𝑎𝑟𝑟 

After the DR event, there is a high possibility in an energy rebound, positively or negatively. If 
energy have been saved during the peak (the case of downward flexibility), it is immediately 
seen that the power demand go up after the peak. Similarly, if energy instead have been increase 
during the demand valley (upward flexibility), the energy need may ramp down after the event 
because the thermal mass have stored part of the excessive energy. The rebound energy 𝐸𝐸𝑎𝑎𝑟𝑟 is 
used to denote this amount of energy rebounded after the DR event (as shown by the yellow 
shaded area in Figure 15). 

𝑬𝑬𝒓𝒓𝒓𝒓 = � �𝑃𝑃𝑡𝑡𝐸𝐸 − 𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸�𝑡𝑡𝑡𝑡
𝑡𝑡∞

𝑡𝑡𝑡𝑡𝐸𝐸

 (2) 

Note that the upper bound for the integration in Equation (2) is infinite, but 48 hours are here 
used in the calculation. In all simulation results, we have confirmed that no rebound effect lasts 
longer than this horizon; therefore, 48 hours is effectively infinite for the study; it may however 
be different for other situations. 

Flexible energy efficiency 𝜂𝜂 
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The DR action does not necessarily save energy consumption for the electricity users. The flex-
ible energy efficiency is introduced to quantify the energy consumption change. Similarly, a cost 
efficiency could also be introduced to take into account the price change, for instance time-of-
use or dynamic electricity price; however, this study intends to be general and not to address the 
price signals. 

𝜼𝜼 = �
𝐸𝐸𝑓𝑓
𝐸𝐸𝑎𝑎𝑟𝑟

� × 100% (3) 

Maximum flexible power 𝑃𝑃𝑓𝑓𝑜𝑜𝑎𝑎𝑚𝑚 

This indicator is helpful to identify the maximum potential of a power change during a DR event 
against the reference case. Eq. (4) is separated into the downward and upward cases instead of 
using absolute values to take into consideration that the rebound phenomenon may occur during 
the DR event. 

𝑷𝑷𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = �
max 
𝑎𝑎𝑑𝑑𝑑𝑑

(𝑃𝑃𝑎𝑎𝑎𝑎𝑓𝑓 − 𝑃𝑃𝑎𝑎𝑎𝑎)

max 
𝑎𝑎𝑑𝑑𝑑𝑑

(𝑃𝑃𝑎𝑎𝑎𝑎 − 𝑃𝑃𝑎𝑎𝑎𝑎𝑓𝑓)  for  downward
upward  (4) 

 

Two additional yearly KPIs are applied to the PV systems: self-generation and self-consumption. 
The self-generation (or load cover factor) estimates the share of the demand met by on-site gen-
eration through various generator types (e.g. PV panels) [5].  

𝑺𝑺𝑺𝑺𝑺𝑺𝒇𝒇 − 𝒈𝒈𝑺𝑺𝒈𝒈𝑺𝑺𝒓𝒓𝒇𝒇𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 =  
∫ min[𝐷𝐷(𝑡𝑡) − 𝐷𝐷(𝑡𝑡) − 𝜁𝜁(𝑡𝑡), 𝑃𝑃(𝑡𝑡)]𝑡𝑡𝑡𝑡𝑇𝑇
0

∫ 𝑃𝑃(𝑡𝑡)𝑡𝑡𝑡𝑡𝑇𝑇
0

 (5) 

Whereby the g(t) is the solar panels power at time t and S(t) represent the battery power balance. 
ζ(t) is corresponding to the losses and l(t) indicates the load power. 

The self-consumption (or supply cover factor) displays the proportion of on-site generation 
which is utilised by the end-user. In fact, this indicator quantifies the system potential to store 
and use the surplus generation. 

𝑺𝑺𝑺𝑺𝑺𝑺𝒇𝒇 − 𝒄𝒄𝒈𝒈𝒈𝒈𝒄𝒄𝒄𝒄𝒇𝒇𝒄𝒄𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 =  
∫ min[𝐷𝐷(𝑡𝑡) − 𝐷𝐷(𝑡𝑡) − 𝜁𝜁(𝑡𝑡), 𝑃𝑃(𝑡𝑡)]𝑡𝑡𝑡𝑡𝑇𝑇
0

∫ 𝐷𝐷(𝑡𝑡)𝑡𝑡𝑡𝑡𝑇𝑇
0

 (6) 

 

4.4 Results  
4.4.1 Building thermal mass 

Figure 16 presents the downward flexible energy for 2-h DR events happening every hour during 
the whole heating season (note the negative values in the y axis). Each independent DR event 
lasts for 2 hours with 2 °C modulation of the set point temperatures for the first and second floor. 
Each data point in the figure represents one simulation result, and all the data points were sorted 
out by the hour of day as well as their correspondent months. The transparent boxes are the same 
as in boxplots with the top edge indicating the 75th percentiles and the bottom edge indicating 
the 25th percentiles. 

The blue curve in the middle shows the median value of the flexible energy. It can be observed 
that the amount of energy which can be shifted is highly correlated to the hour of day. During 
the night time, the shifted energy is much more significant than during daytime with maximum 
value three times of the minimum. This is because the building generally experiences higher 
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ambient temperatures during the day and can have solar gains as well. This daily cycle of tem-
perature results in lower energy demand in the reference case and therefore reduced DR poten-
tial. 

The colors of data points indicate the months. Among the 7 months investigated, it is clear to 
see that the coldest months (January and December) have higher flexibility than the shoulder 
months (like March, April and October). The small values of flexible energy that are spread out 
in the top part of the figure are mainly during the three shoulder months. This seasonal trend is 
the same as explained for the daily phenomenon in that the reference case has lower energy 
demand, therefore the DR has also lower potential to shift the energy demand.  

Figure 17 shows the upward energy flexibility in a same format as shown in Figure 16. A similar 
daily and seasonal trend for the upward flexibility is found due to the same reasons discussed 
above. The spread of values shows a strong daily variation, but the median upward flexible en-
ergy is approximately constant (and close to the available heating capacity). This shows that the 
thermal mass capacity of the studied building is large enough to store the heating energy pro-
vided during the 2-h DR event. 

The maximum power shift shows the same trends as the flexible energy for both cases. Based 
on the  discussion above, it can be concluded that the potential of buildings to shift heating power 
demand is higher during colder weather. This is beneficial for the utility, which experiences a 
higher demand during these periods. The ability to use more power by buildings is also higher 
in colder weather but the weather impact on the median values is not as significant. The building 
can still have the potential to use more energy when the grid would experience a significant solar 
power input during the day. 

Figure 18 presents the downward flexible efficiency. A nearly constant median efficiency 
around 1.2 is found. This means that the rebound energy is almost always 20% less than the 
saved energy (the several zero points represent cases when both the flexible energy and rebound 
energy are 0). The upward flexible efficiency shows similar results as the downward one as 
shown in Figure 5. This confirms that the DR strategy in this study is energy efficient – i.e. save 
energy. 

 

 
Figure 16 Downward flexible energy of the heating season. 
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Figure 17 Upward flexible energy of the heating season 

 

Figure 18 Downward flexible efficiency of the heating season. 

 

Figure 19 Upward flexible efficiency of the heating season. 

 

4.4.2 PV system with battery 

Figure 20 shows the self-generation for a whole year for three different load profiles associated 
with low, average and high electricity consumption patterns. The results are related to the “grid-
support” mode of operation where the battery stores the surplus generation to supply the load 
over peak hours. 
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Points with a zero value on the x-axis represent conventional grid-tied photovoltaic systems 
without batteries. As mentioned above, the performance obtained is the same as a HPVS running 
in UPS mode, as in that case the battery is maintained fully charged under normal operation and 
not used to compensate for the solar generation variations. 

Adding a battery to a PV system allows to almost double the self-generation and more than 
double the self-consumption, and there appears to be a saturation of the battery benefits above a 
value of 4 kWh/kWp for the selected load profiles. 

Figure 20 shows that the installed PV capacity has a large impact on self-generation, which was 
expected. A more surprising result is that self-generation is also strongly affected by the total 
electrical load, with higher loads corresponding to higher self-generation. For the same HPVS 
configuration, the solar fraction (the potential share of on-site generation to cover the load) will 
decrease if the building load increases, but in all cases (with the selected assumptions and con-
figurations) the self-generation will increase. This KPI does not “credit” the system for any ex-
ported energy, and increasing the building load will shift some of that exported energy towards 
directly used energy and, therefore, improving the self-generation. 

 

Figure 20 Self-generation vs battery capacity. 

 

Figure 21 shows the results obtained for self-consumption. There is a direct relationship between 
the amount of exported (or dumped) energy and self-consumption, so adding a battery has a 
large impact on that KPI. The saturation effect observed for self-generation is even more present, 
showing that the sizing of HPVS systems will have a large impact on their energy flexibility, 
without necessarily requiring much larger investment costs than conventional (battery-less) PV 
systems.  

A possible explanation for the relatively quick saturation of the two KPIs with increasing battery 
sizes is that the system performance is largely influenced by two extreme periods. In winter, an 
all-electric building load will be very high due to space heating, and solar generation will be 
low. So, the need for storage is relatively small, only representing a few extremely sunny days. 
In summer, on the other hand, the building load will typically be much lower, and the solar 
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generation will be much higher. Adding a relatively small battery capacity allows dealing with 
the winter period, but not with the summer period. And the results seem to show that the inves-
tigated battery sizes (up to 15 kWh/kWp) do not result in significant improvements over much 
lower battery sizes – improving the self-consumption significantly would require a longer-term 
energy storage (closer to seasonal storage than to the type of short-term storage investigated in 
this study). 

 

Figure 21 Self-consumption vs battery capacity. 

 

Figure 8 shows that the available energy flexibility 𝐸𝐸𝑓𝑓 ranges from 0 to slightly over 12 kWh, 
the lower values taking place during the day. The minimum flexibility at night is at 4 kWh except 
when the battery is full, as discussed above. The median value is relatively constant during the 
day, with higher values immediately after a sunny day, when the battery is more likely to be 
charged and the load increases at late afternon/early evening activities. 

During the night time the higher 𝐸𝐸𝑓𝑓 occurred over the months with higher solar radiation (e.g. 
June and July), when the surplus of generation during the day can be used at night to meet the 
load. Over the day time, usually on-site generation supplies the load and the system operates in 
semi-standalone mode. In these conditions, upward flexibility is gained by shutting down the 
PV panels and supplying the load with the grid, so that the shape of the flexibility matches the 
shape of the building load, and is higher during the winter months (e.g. December and January). 

Figure 23 and Figure 24 display the upward and downward energy flexibility for UPS mode 
respectively in a same format as shown in Figure 21. As it is expected and explained previously 
for both upward and downward energy flexibility, the correspondent KPI depends on the share 
of on-site generation in supplying the load. The upward flexibility is a direct representation of 
PV generation that can be shut down, and the downward flexibility represents the share of the 
load that is not covered by PV, up to the maximum battery discharge current (about 8 kW here). 
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Figure 22 Upward flexible energy-grid support mode. 

 
Figure 23 Upward flexible energy-UPS mode. 

 
Figure 24 Downward flexible energy-UPS mode. 

4.5 Discussions 
This section assessed the energy flexibility of an all-electric Canadian house. The energy flexi-
bility was categorized into two scenarios: downward and upward flexibility. The former scenario 
is similar to load shifting, which shows the ability of buildings to reduce power demand during 
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peak periods. The upward flexibility denotes the ability to use more energy when the power 
demand is low on the grid.  

Simulation results show that the energy flexibility potential of using thermal mass is significant. 
The studied house shows a median decrease of the energy use by 6 kWh and a median increase 
by 7.5 kWh for 2-h DR events. The flexibility depends on the time of the DR event, as it is 
affected by weather and building operation. The flexible energy amount is higher during colder 
weather because the normal operation of the house has a higher energy demand during these 
periods. In addition, the maximum flexible power is also very promising, especially for the up-
ward flexibility. 

Yearly KPIs such as self-generation and self-consumption show that adding batteries to a con-
ventional grid-tied PV system can dramatically improve the available flexibility, with a satura-
tion of the effects for battery capacity higher than 4 kWh/kWp under the selected assumptions. 

Dynamic KPIs calculated for 1 hour upward and downward flexibility events show that there is 
a large variability in available flexibility, depending on the day and time of the year and on the 
inverter control strategy. The UPS mode, which results in the lowest yearly self-generation and 
self-consumption, presents a significant downward flexibility potential, limited by the maximum 
battery discharge current. Its upward flexibility results from the ability to shut down PV gener-
ation and is entirely dependent on solar radiation. On the other hand, the grid-support (or PV 
priority) operation mode, which already minimizes grid imports, offers no potential for down-
ward flexibility under the current assumptions. Its upward flexibility is variable between 0 and 
12 kWh in this study, with a relatively constant median value around 5 kWh. 
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5.1 Modelling objective  
The aim of this study is to present the implementation and performance of a model predictive 
control framework based on a multi-objective genetic algorithm. The framework optimizes 
building control by firstly identifying a Pareto frontier with respect to multiple objectives con-
sidered, and then selecting the final strategy based on the user-defined priorities for the respec-
tive objectives. Although the approach requires more computing resources than the more tradi-
tional constrained convex optimization, it is more flexible in terms of the optimization problem 
formulation. New objectives can easily be added, and the objective priorities altered during the 
operation of the system. This flexibility makes the framework attractive for global optimization 
of multiple systems, including systems based on on/off control. The framework is compatible 
with the Functional Mock-Up Interface and uses models exported to Functional Mock-Up Units. 
The framework performance is tested in a virtual experimental testbed using a virtual building 
modeled in EnergyPlus. It is the first demonstration of applying this framework in a building 
application.  

5.2 Building and system description  
The framework was tested on a virtual case study building implemented in EnergyPlus (similarly 
to e.g. Ascione et al. 2016 or Bianchini et al. 2016). The virtual building is a downscaled version 
of the OU44 teaching building at the SDU Campus Odense (Fig. 25). It has the same HVAC 
system type and the building envelope construction as the actual building, but it is limited to just 
7 thermal zones. The thermal zones have a similar geometry as the classrooms in OU44. The 
building is equipped with a hydronic heating loop and a mechanical ventilation system with pre-
heating and a heat exchanger unit. 
 

 
Figure 25 (a) simplified test model limited to 7 zones, (b) actual OU44 building. 

 
5.3 Method and modelling tools 
The optimization framework consists of the following parts (Fig. 26):  

a) multi-objective genetic algorithm (MOGA), 
b) simplified gray-box models calibrated using ModestPy – Functional Mock-up Unit 

parameter estimation toolbox (Arendt et al. 2018), 
c) archiver with the sMAP interface. 

Due to the use of Functional Mock-Up Interface (FMI) (Blochwitz et al., 2016) and sMAP in-
terfaces, the framework is model- and system-independent. E.g. the same interface is used to 
communicate with a virtual building (simulation tests) as with the actual building (real applica-
tion). 
 
The optimizer is based on a multi-objective genetic algorithm (MOGA) (Sørensen and Jørgen-
sen, 2017) that constructs a Pareto frontier with respect to the considered objectives (Fig. 27). 
Each individual in the population represents a specific control policy, e.g. specific heating and 
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ventilation profiles, that is tested in the simulation. The Pareto frontier construction is iterative 
and based on the genetic algorithm operations: selection, crossover, and mutation. Whenever a 
new individual appears in the evolution, with a better fitness with respect to at least one of the 
objectives, it joins the Pareto frontier. When one of the stopping criterions is met, the evolution 
stops and the algorithm proceeds to the second phase in which the final policy is selected. There 
two stopping criterions in use: (1) no improvement in the Pareto frontier for a defined number 
of generations, (2) maximum computational time reached. 
 

 
 

Figure 26 Optimization framework setup based on a virtual building. 
 

The policy selection in the second phase is conducted recursively. In each step i the subset of 
individuals optimal with respect to the priority level Li (Fig. 27) is selected. Each priority level 
can contain either one or more objectives. In the case there are two or more objectives at the 
same level, the objectives are normalized in order to identify the optimal population subset. 
However, no normalization is required for priority levels with a single objective. Finally, after 
traversing through all the levels, one or more equally optimal policies are left, out of which one 
is selected randomly. 
 
Due to the FMI-compatibility and the use of MOGA the framework is essentially model inde-
pendent. The models can be implemented in any FMI-compliant tool, and they can be non-linear, 
non-differentiable or even non-continuous. In addition, since the optimization is not based on a 
cost function, adding new objectives is straightforward. The objectives do not have to be nor-
malized with respect to one another. Therefore, the framework is potentially more flexible than 
model predictive control (MPC) systems based on collocation (Magnusson and Åkesson 2015) 
or shooting methods (Lazutkin et al. 2014). Such features might be especially relevant for build-
ing systems, which are often non-linear (e.g. HVAC) and non-continuous (e.g. on/off control-
lers). On the other hand, MOGA is expected to be more computationally demanding than the 
gradient-based methods. 
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Figure 27 Pareto frontier in the multi-objective genetic algorithm optimization. 

 

MOGA uses 7 gray-box zone models to simulate the effects of control policies on the thermal 
zones in the analyzed building. The zone models are based on the RC thermal network, and each 
zone model has the same structure (Fig. 28), but different parameters. The models are imple-
mented in Modelica (Mattsson and Elmqvist, 1997). The zone model parameters were estimated 
by minimizing the error in indoor temperature and CO2 compared to the EnergyPlus outputs 
using the ModestPy toolbox (Arendt et al. 2018). 
 
The performance of the framework is compared with the rule-based control (RBC) in a one-
month long simulation, based on the climate data for January from Typical Meteorogical Year 
for Copenhagen. It is assumed that the framework has control over the room temperature set-
points (each room can have a different setpoint) and has access to room occupancy schedules. 
In the real applications the occupancy schedules would be replaced with occupancy predictions. 
The influence of the quality of the occupancy predictions on the performance of the framework 
is not considered in this study. Two MOGA-based scenarios are considered: 
1. CTRL-EE – optimization of temperature setpoints to minimize energy consumption and 

maintain indoor thermal comfort, 
2. CTRL-DK1 – optimization of temperature setpoints to minimize energy price (based on 

the Nord Pool market data) and maintain indoor thermal comfort. Electric heating is as-
sumed in this case. 

In both scenarios the maintenance of indoor thermal comfort has the highest priority. In the RBC 
strategy the temperature setpoints are scheduled to 20 °C during weekdays between 5:00-16:00, 
and 15 °C otherwise. The RBC strategy is implemented directly in EnergyPlus. 
 
The occupancy schedules for the seven zones were generated based on the reference schedule 
for office buildings available in OpenStudio, with additional time/value offsets, so that there are 
no two same schedules in the building. 
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Figure 28 Gray-box model of a zone based on the R2C2 thermal network (Modelica). 

 
5.4 Results  
Compared to the implemented RBC, MOGA used around 24-25% less energy for heating (Ta-
ble 1). Similar savings were achieved in both scenarios, CTRL-DK1 and CTRL-EE. 
 
Table 6 Total heating energy consumption per scenario 
Scenario Total heating energy 

[kWh] 
Relative  
[% of RBC] 

CTRL-EE 4050 75 
CTRL-DK1 4092 76 
RBC 5369 100 

 
Based on the indoor temperature profiles (Figs. 29-30) it can be concluded that most of the en-
ergy savings were due to the demand driven heating, as opposed to the fixed schedule-based 
behavior in the case of RBC. The indoor temperature profiles in RBC were repetitive and, in 
many periods, not reflecting the actual occupancy, e.g. see large deviations between RBC and 
MOGA results on January 4, zones 2-7 in Fig. 29. In addition to the demand-driven behavior, in 
most cases MOGA was able to preheat the zones before the actual occupancy occurred, with 
some exceptions when it did not start the preheating early enough, e.g. on January 4, zone 4 in 
Fig. 29. 
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The similar monthly profiles of indoor temperature in CTRL-EE and CTRL-DK1 (Fig. 30) sug-
gest that the highest priority objective, i.e. the thermal comfort maintenance, dominated the so-
lution. 
 

 
 

Figure 29 Indoor temperature profiles within the first five days of simulation. The areas shaded 
in gray mark occupancy periods. 
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Figure 30 One-month indoor temperature profiles for the three considered scenarios (RBC, 

CTRL-EE, CTRL-DK1). Each column represents a single zone (profile name - zone number). 
 
The framework reduced the discomfort (measured in Kh) by around 70% (Fig. 31). The discom-
fort metric used in the study was calculated as the product of the temperature difference between 
the setpoint of 20°C and the actual temperature and the time in which the difference was ob-
served. Only occupancy periods and only the negative temperature differences were taken into 
account, i.e. when the indoor temperature was lower than 20°C. E.g. 1 Kh means that the tem-
perature was below the setpoint by 1 degree during 1 h of occupancy. The obtained discomfort 
metrics were 287.85, 42.18, 41.58 for RBC, CTRL-EE, CTRL-DK1, respectively. The result 
depends on the chosen reference RBC schedules, however the discomfort in RBC could only be 
decreased at the cost of increased energy consumption. It is believed that the slightly lower dis-
comfort in CTRL-DK1 as compared to CTRL-EE is likely due to the stochastic nature of the 
optimization algorithm. Since the framework had access to 100% accurate occupancy “predic-
tions”, it could theoretically minimize the discomfort to 0 Kh. The fact that the discomfort metric 
was non-zero indicate that either the solution was still suboptimal, e.g. due to the maximum CPU 
time reached. The suboptimality of the solution is at least partially true as can be seen in the case 
of zone 5, CTRL-EE, January 3 in Fig. 29, where the indoor temperature setpoint at night is 
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slightly above actually needed. The influence of the objectives hierarchy and optimization set-
tings should be investigated further in the future. 
 

 
Figure 31 Indoor comfort violations for the three considered scenarios 

 
The indoor heating profiles and the energy price during a subperiod of the analyzed month can 
be compared in Fig. 32. As in the case of temperature, CTRL-EE and CTRL-DK1 followed a 
similar trend with one major exception on January 4 when the electric energy price was negative 
for a short period of time. The controller in CTRL-DK1 decided to consume as much energy as 
possible in that time, meaning that the second priority objective came into play. However, for 
most of the time the price signal had no influence on the solution. Possibly higher price variations 
or different objective hierarchy would be needed to effectively optimize for the total energy cost 
in a real application. 
 
Contrary to expectations, the CTRL-DK1 yielded slightly higher energy cost than CTRL-EE 
(Figure 33). However, as argued before, this is likely due to the stochastic nature of the optimi-
zation algorithm and the dominant role of the highest priority objective of the thermal comfort 
maintenance. 
 

 
Figure 32 Total heating profiles for the three scenarios (top) vs. energy price (bottom). 
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Figure 33 Total energy cost per scenario. 

 
The presented results were computed using code that was only partially parallelized, e.g. Pareto 
frontier detection was performed on multiple cores. However, the main bottleneck with respect 
to the CPU time was the simulation of the gray-box zone models, which was performed on a 
single core. Due to the nature of MOGA, the zone model simulations need to be repeated thou-
sands of times. In this setup a maximum allowed optimization time per each 7h optimization 
horizon was five minutes. After each optimization, a one-minute time slot was used to synchro-
nize the measurements and control strategy between MOGA and the virtual building. The opti-
mization was repeated every 1h of the virtual building’s time. In total, around 3 days of real time 
were needed to perform a one-month emulation of the virtual building with the MOGA frame-
work (for one scenario). Although the computational requirements of the framework are consid-
erable, they are feasible for implementation in real buildings. However, implementation in large 
buildings (with hundreds of zones) may require parallelization of the zone model simulations. 
In general, more investigations regarding the scalability of the framework are required. 
 
Summarily, the MOGA framework reduced the energy consumption by around 25% (compared 
to RBC), however most of the saving were due to the demand-driven heating and not due to the 
utilization of the building dynamics. This may be due to either a low thermal inertia of the stud-
ied building or due to the deficiency of the dynamic optimization method. The relatively small 
difference in the results between the case based on the energy efficiency objective and the case 
based on the energy cost minimization objective shows that dynamic energy pricing might not 
be a sufficient incentive for increasing energy flexibility in the analyzed building.  
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6. The investigation of the energy flexibility of a residential building 
via the hybrid energy storages in Hong Kong 
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6.1 Modelling objective  
Several objectives are included as shown below:  

1) Quantitatively investigation of the energy flexibility of a building with specific flexibility 
indicators and propose technical solutions to enhance the building energy flexibility; 

2) Investigation of the energy interactions between a flexible building, a smart grid and a electric 
vehicle in the hybrid net zero energy building and electric vehicle (NZEB-EV) system. 

6.2 Building and system description  
There are two floors in the studied single-family house with a net floor area of 100 m2 and a 
height of 3 m in each floor. An attic is designed for shedding rain water and shading the solar 
radiation. The titled angle and the total area of the attic roof are 22º and 108 m2, respectively. 

Regarding the operational and the control principle, when the renewable generation is higher 
than the total electric demand, one option is to drive the renewable-air handling unit cooling 
storage tank (REe-ACST) recharging chiller or the renewable-space cooling storage tank (REe-
SCST) recharging chiller to convert the surplus renewable electricity to the cooling storage 
tank, resulting in the decrease of the total electric demand. Another option is the renewable-
domestic hot water storage tank (REe-DHWT) recharging strategy, which will reduce the elec-
tric consumption of the auxiliary heater for the DHW heating. This also results in a decrease of 
the total electric demand. These two recharging strategies will enhance the forced energy in 
both tanks. If there is still surplus renewable electricity, it will be used to charge the electric 
vehicle (EV) before charging the static battery. Afterwards, the rest of the surplus renewable 
electricity will be exported to the electric grid. 

During the period when the renewable electricity is insufficient to cover the total electric de-
mand, the delayed thermal energy in both the ACST, the SCST and the DHWT will be used to 
back up the total electric demand. If the total electric demand is not completely covered when 
the thermal storages are completely discharged, the static battery will be discharged to cover 
the total electric demand before discharging the EV battery. In the end, the rest of the total 
electric demand will be covered by importing electricity from the grid. 

6.3 Method and modelling tools 
This research is conducted on the Transient System Simulation Program called TRNSYS 18 [2], 
which is a dynamic simulation environment for building energy technology, HVAC and renew-
able energy systems. The open source code-based models (Types) make it possible for refining 
the existing model or developing new models. This enhances the applicability and the practica-
bility of the simulation tool in the building energy simulation. 

To quantitatively investigate the building energy flexibility, several flexibility indicators have 
been proposed from the perspectives of the time-duration, the flexible power and the flexible 
energy.  

Forced period, tforced: the time-duration when the cooling load of the building is lower than the 
cooling power of the chiller, [h]. 

tforced =∫ GT((Cchiller,normal + Cchiller,recharging-Lcooling), 0)·
tend 
0 dt                              (1) 

Delayed period, tdelayed: the time-duration when the cooling load of the building is higher than 
the power of the chiller, [h].  
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    tdelayed = ∫ GT((Lcooling − Cchiller,normal), 0)·
tend 
0 dt                                       (2) 

REe surplus period, tsurp: the time-duration when the REe electricity generation is higher than 
the total electrical demand, [h].  

  tsurp = ∫ GT((GREe − Lelectricity), 0)·
tend 
0 dt                                             (3) 

REe shortage period, tshort: the time-duration when the REe electricity generation is less than 
the building total electric demand, [h]. 

  tshort =∫ GT((Lelectricity−GREe), 0)·
tend 
0 dt                                              (4) 

Forced power, ρforced: the additional cooling power generation of both the normal chiller and 
the excess REe-cooling recharging chiller compared to the cooling load, [kW].  

ρforced =Max(((Cchiller,normal + Cchiller,recharging  − Lcooling),0)                          (5) 

Delayed power,ρdelayed: the decreased cooling power generation of the normal chiller com-
pared to the cooling load, [kW]. 

ρdelayed =Max((Lcooling − Cchiller,normal),0)                                          (6) 

Flexible energy (Eforced, Edelayed, EDHW and EAux): the integration of the flexible power over 
the corresponding flexible period, [kWh/m2.a]. 

Eforced = ∫ ρForced
tForced 

0 dt/A                                                  (7) 

Edelayed = ∫ ρDelayed
tDelayed 

0 dt/A                                                 (8) 

EDHW = ∫ PDHWdttsurp
0 /A                                                      (9) 

EAux = ∫ PAuxdttshort
0 /A                                                       (10) 

where PDHW  and PAux  are the surplus renewable electricity consumption in recharging the 
DHW tank, and the electricity consumption of the auxiliary electric heater, respectively. A is 
the floor area of the single-family house. 

The FFforced indicates the capability of the flexible energy system for shifting the forced energy 
to the REe surplus period compared to the REe shortage period. The FFdelayed indicates the ca-
pability of the flexible energy system for shifting the delayed energy to the REe shortage period 
compared to the REe surplus period. FFAC indicates the capability of the flexible energy system 
for shifting the forced energy and the delayed energy to the preferable period during both charg-
ing and discharging processes. FFDHW indicates the capability of the surplus renewable electric-
ity for heating the DHWT compared to the electricity consumption of the auxiliary heater at the 
REe shortage period. 

FFforced= ∫ ρforceddt
tsurp
0 −∫ ρforceddttshort

0

∫ ρforceddt
tsurp
0 +∫ ρforceddttshort

0

                                              (11) 
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FFdelayed=
∫ ρdelayeddttshort
0 −∫ ρdelayed

tsurp
0 dt

∫ ρdelayeddttshort
0 +∫ ρdelayed

tsurp
0 dt

                                           (12) 

FFAC=w1·FFforced +w2·FFdelayed                                               (13) 

       FFDHW= ∫ PDHWdt
tsurp

0 −∫ PAuxdttshort
0

∫ PDHWdt
tsurp
0 +∫ PAuxdttshort

0

                                               (14) 

where w1 and w2 are the weighing factors during both the charging and the discharging pro-
cesses, respectively. In this study, they are assumed to be 0.5. All flexibility factors range from 
-1 to 1. The larger the flexibility factors are, the more flexible the system will be. 

To vividly demonstrate the flexibility with respect to the above description, Figure 34 demon-
strates the flexible time-duration, the flexible power, the flexible energy and the flexibility in-
dicators. As shown in Figure 34(a), when the chiller charges the thermal storage tank, the cool-
ing energy generation of the chiller can be higher than the cooling load, and the forced energy 
will be stored in the tank. The thermal storage tank will be discharged to meet the cooling load, 
and thus the operational time-duration of the chiller is postponed. Therefore, the delayed energy 
is resulting from the stored energy in the tank and the postponement of the operational time-
duration of the chiller. Figure 34(b) demonstrates the renewable generation, the total electric 
demand, the cooling load and the cooling energy generation of the chiller. Both the flexible 
energy and the flexibility factors are quantitatively calculated by Equations (15)-(23). 

(a)

(a) (b)  

Figure 34 The demonstration of the flexible energy and the flexibility factors for the ther-
mal storage system 

Eforced =∫ [Cchiller-Lcooling]t3
t1 dt/A                                              (15) 

Edelayed =∫ [Lcooling-Cchiller]
t1 

0 dt/A+∫ [Lcooling-Cchiller]dt24
t3 /A                           (16) 

E+
forced =∫ [Cchiller-Lcooling]t3

t2 dt/A                                              (17) 

E-
forced =∫ [Cchiller-Lcooling]t2

t1 dt/A                                               (18) 

E+
delayed =∫ [Lcooling-Cchiller]

t1 
0 dt/A+∫ [Lcooling-Cchiller]dt24

t4 /A                            (19) 

E-
delayed =∫ [Lcooling-Cchiller]

t4 
t3 dt/A                                                (20) 
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Eimp =∫ Max[(Lelectricity-G
REe

),0]24
0 dt/A                                            (21) 

   FFforced =
Eforced

+ -Eforced
-

Eforced
+ +Eforced

- = ∫
[Cchiller-Lcooling]t3

t2 dt/A-∫ [Cchiller-Lcooling]t2
t1 dt/A  

∫ [Cchiller-Lcooling]t3
t2 dt/A+∫ [Cchiller-Lcooling]t2

t1 dt/A
                  (22) 

FFdelayed =
Edelayed

+ -Edelayed
-

Edelayed
+ +Edelayed

- = 
∫ [Lcooling-Cchiller]

t1 
0 dt/A+∫ �Lcooling-Cchiller�dt/A24

t4  -∫ [Lcooling-Cchiller]
t4 
t3 dt/A 

∫ [Lcooling-Cchiller]
t1 
0 dt/A+∫ �Lcooling-Cchiller�dt/A24

t4  +∫ [Lcooling-Cchiller]
t4 
t3 dt/A

        (23)        

where t1 and t3 refer to the time when the cooling energy generation of the chiller is equal to the 
cooling load; t2 and t4 refer to the time when the renewable energy generation is equal to the 
total electric demand. 

6.4 Results  
1) In the cooling dominated region, Hong Kong, the BIPVs can maximumly reduce the cooling 

load of the residential building by 22.1%. To meet the energy demand of the hybrid NZEB-
EV system, the NZEB should be equipped with BIPVs and an 8 kW wind turbine. By im-
plementing the latest grid feed-in tariff, the NZEB will get the net annual operational income 
of 646.3 HK$/m2.a. 

2) In this study, the investigated technical solutions for enhancing the building energy flexibil-
ity include the excess REe-recharging strategies, the integration of an electric vehicle and 
the enhancement of both the rated capacity of the on-site renewable system and the storage 
capacity of hybrid energy storage systems. 

3) In addition, the integration of the EV with buildings can enhance the building energy flexi-
bility, which is also affected by the interaction time-duration, the storage capacity and the 
limitation of the discharging condition of the EVs’ battery. In the scenario when a 48 kWh 
EV is integrated with a residential NZEB at daytime, 87.2% of the annual total energy 
charged to the EV is from renewable energy. Meanwhile, 71.7% of the annual total energy 
charged to the EV can be used for covering the building demand, and 55% of annual energy 
demand for the travelling purpose can be covered by the renewable system. 

Challenges: 

1) In this study, despite the electrical-to-thermal energy conversion in the hybrid NZEB-EV 
system, the energy form for the flexibility indicators is only related to the thermal energy. It 
is necessary to develop the flexibility factors that contain both the thermal and the electric 
energy forms. 

2) In this study, the uncertainty of input parameters is not considered. Moreover, the computa-
tional complexity of the energy prediction of the multivariable nonlinear building is not ad-
dressed. In the future, an advanced controller considering the uncertainty of the scenario 
parameters will be developed with the data-driven supervised deep learning technique. 

6.5 References 
Feed-in Tariff Scheme and Renewable Energy Certificate. 

https://www.clpgroup.com/en/Media-Resources/site/Current%20Releases%20Docu-
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7. Few-shot learning: data-driven modelling of hot water systems 
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7.1 Modelling objective  
The objective of this study is to model the behaviour of hot water systems in an online, data-
driven fashion with minimal sensing requirements. Modelling the hot water system includes 
characterizing both the storage element (i.e. the hot water storage tank) and the heating element 
(e.g. an electric or gas boiler, a heat pump etc.). 

A number of modelling techniques have been proposed in literature which aim to model the 
behaviour of hot water systems (Ruelens et al., 2014), (Kazmi, 2016), (Markovic et al., 2017). 
These include white-box modelling methods which utilize a human modeller’s domain expertise 
to characterize the system dynamics of the hot water system (Hensen, 2012). At the other end of 
the spectrum, lie black-box modelling techniques which remove the dependence on the human 
domain expert by learning the system’s dynamics from sensor data (Kazmi et al., 2018). This 
can be done both offline (when a model is learnt prior to operation) and online (when a model 
is learnt during operation). Somewhere between these two extremes lie grey-box modelling 
methods which calibrate an existing model to observed data (Afram et al., 2014). These methods 
typically employ explainable models e.g. the popular RC models. 

Most of these methods suffer from a number of significant shortcomings. White-box methods 
are constrained by the expertise and availability of the human modeller. The sheer number of 
hot water systems to be modelled especially makes it impractical to consider every single one 
individually. Furthermore, since these methods are typically employed in the design-phase, they 
seldom reflect operational performance of the modelled systems. The biggest reason for this is 
occupant behaviour which drives system operation to regions of the state-space which were not 
adequately modelled. Black-box methods, while avoiding the costly dependence on human do-
main expertise, rely on complete sensing of the system to model the system accurately. Where 
the data being gathered does not fully reflect the internal state of the system, these methods break 
down. This is often the case for hot water systems where only minimal sensing is employed in 
the form of a solitary temperature sensor. As the temperature distribution inside the storage  is 
nonlinear because of stratification and other nonlinear dynamics, this sensory information is in-
sufficient to learn an accurate dynamics model. Grey-box systems too inherit most of these dis-
advantages in real world settings (Kazmi et al., 2019). 

This example presents a method which resolves most of these issues by leveraging transfer learn-
ing, a relatively recent development in machine learning (Pan et al., 2010). At its heart, the meth-
odology provides a structured way of integrating information collected by agents operating in a 
variety of settings. Being data-driven, it is not limited to homogeneous devices and can also 
accelerate learning in the context of heterogeneous devices (i.e. devices with different physical 
and thermal characteristics). This study presents the results of applying transfer learning to two 
different housing projects comprising of recently refurbished net-zero energy buildings in The 
Netherlands.  

The example also benchmarks the performance of the proposed system with a more convention-
ally formulated black-box system which relies on raw time series learning to model the hot water 
system. Furthermore, it highlights the influence increasing agency and data collection periods 
have on both the benchmark and the proposed system. By successfully learning a reliable system 
dynamics model in an extremely limited time frame (one week for the storage, one month for 
the heating element) the example successfully demonstrates few-shot learning (Ravi and Laro-
chelle, 2016). Learning an accurate dynamics model in a timely manner brings about not just the 
time benefits but also enables smart control to improve energy efficiency and provide ancillary 
services to the grid. 



63 
 

7.2 Building and system description  
We consider two different housing projects in the Netherlands in this case study. All the houses 
considered (in both projects) are net-zero energy buildings and are insulated to a very high de-
gree. Furthermore, all the houses considered in both projects employ air-source heat pumps 
which are used to provide both the hot water and the space heating in the building (Kazmi et al., 
2019). The storage installed in each house in both projects is 200 litres. However, the hot water 
system is identical only for houses belonging to the same project. There are considerable differ-
ences in the make of the hot water system between the two projects (most important of which is 
the completely different orientation and dynamics of the storage as well as the way the heat 
pump interacts with it). In subsequent sections, this distinction is made clear by referring to 
households (and devices) belonging to the same project as homogeneous, and those belonging 
to different projects as heterogeneous.  

As the example focuses on data-driven modelling of the hot water system, it is important to 
enumerate the data streams it uses (represented in Fig. 35). These include: 

1. Temperature measurement in the storage: for project 1, this was at the halfway point in 
the storage; for project 2, it was at one third of the storage height 

2. Hot water flow from the storage vessel 

3. Ambient temperature 

4. Electricity consumed by the heat pump for hot water production 

Making use of this data, the objective is to learn a system dynamics model for the hot water 
system. This further comprises of a storage model and a heating model. The purpose of the 
storage model is to estimate the state of the storage (i.e. its state of charge) at any given instant, 
while the purpose of the heating model is to estimate the amount of energy required by the heat-
ing element (heat pump in this case) to reheat the storage vessel from an initial to a final state of 
charge. Finally, it is important to note here that while over 50 houses were available for analysis 
for the first project, there were only eight houses in the second project which constrained data 
availability considerably. 

 

Figure 35 A schematic representation of the sensing employed in the projects and the non-
linear temperature distribution inside the storage, which complicates the state of charge estima-

tion. 



64 
 

7.3 Method and modelling tools 
This section summarizes both the benchmark black-box method and the developed transfer 
learning framework to improve the modelling process. The modelling technique used in both 
cases is a deep neural network (LeCun et al., 2015). The architecture of the neural network is 
discovered through an extensive grid search over hyperparameters which includes the number 
of layers, number of neurons in each layer, choice of activation function, regularization and 
learning rate (Goodfellow, et al., 2016). Keras, an open source library for deep learning, was 
used with Python to train and evaluate the different neural networks (Chollet, 2015). Numerous 
metrics can be used to evaluate the performance of a black-box system. In this example, we will 
focus on two such measures: the R2 metric (or the explained variance in observation data by the 
fitted model) and the mean absolute error (which is in the units of measurement and is useful to 
quantify prediction error in absolute terms) (Goodfellow et al., 2016). Additionally, thermody-
namic tests designed to test the general validity of model predictions were also developed and 
included here for completeness. These metrics will be investigated for both the heating and the 
storage models.  

7.3.1 Benchmark black-box method 
The black-box model used to benchmark the results learns from time series of raw sensor data. 
In this case, the only question to consider is which sensor streams to include and their temporal 
extents (i.e. how much historic data should be fed to the modelling method). On the one hand, 
increasing the temporal window allows the neural network to detect longer term trends (i.e. low 
frequency events). On the other hand, increasing the temporal window length can confuse the 
neural network by providing it unnecessary inputs. Furthermore, this also ties in with the curse 
of dimensionality where increasing the input feature vector considerably increases the explora-
tion (or amount of data) required by the neural network to learn an accurate representation of the 
hot water system. In this case, the length of the window was chosen by evaluating model per-
formance for different window lengths. The best performance trade-off was observed at using 
an entire historic day for all sensors under observation (although the model improvements were 
marginal). 

7.3.2 A taxonomy of transfer learning 
Transfer learning offers three key benefits when compared to traditional data-driven (i.e. black 
box) methods. These include a higher initial performance, a higher asymptotic performance and 
a faster rate of learning. This is highlighted in Fig. 36. 

 
Figure 36 A graphic representation of the potential benefits of transfer learning. 
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Before discussing key results, a note on terminology is necessary here (Pan et al., 2010). Transfer 
learning is meant to transfer ‘knowledge’ from a source 𝐷𝐷 to a target 𝑇𝑇. Often it is the case that 
a lot of data has been gathered for the source which can potentially be used to help improve the 
learning performance on the target of interest where training data is sparse (or expensive). How-
ever, in reality the separation between source and target is rather arbitrary, and knowledge can 
flow in both directions. More formally, transfer learning includes a domain and a task. The do-
main 𝒟𝒟 consists of (1) the input feature space 𝒳𝒳, and (2) the marginal probability 𝑃𝑃(𝑋𝑋). Given 
a domain 𝒟𝒟 = {𝒳𝒳,𝑃𝑃(𝑋𝑋)}, the task 𝒯𝒯 consists of (1) the label space 𝒴𝒴, and (2) a predictive func-
tion 𝐸𝐸(. ) which is learned in a supervised manner based on training examples {𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑖𝑖}. This can 
also be seen as the conditional probability distribution 𝑃𝑃(𝑌𝑌|𝑋𝑋).  

In all cases considered in this example, the feature space 𝒳𝒳 and the label space 𝒴𝒴 are the same 
for all agents, i.e. 𝒳𝒳𝑆𝑆 =  𝒳𝒳𝑇𝑇 and 𝒴𝒴𝑆𝑆 = 𝒴𝒴𝑇𝑇 respectively. What this means is that the observed 
input and predicted output features remain the same for both source and target. However, indi-
vidual household (occupant) behaviour means that the marginal probability 𝑃𝑃(𝑋𝑋) is different 
across different agents i.e. 𝑃𝑃𝑆𝑆(𝑋𝑋) ≠ 𝑃𝑃𝑇𝑇(𝑋𝑋) where 𝑋𝑋 = {𝑃𝑃1, 𝑃𝑃2, … , 𝑃𝑃𝑎𝑎} ∈  𝒳𝒳,. This is the case be-
cause differences in the occupant behaviour drive even identical hot water systems to different 
operational zones, regardless of the hot water system employed. On the other hand, when the 
hot water system differs, i.e. for the heterogeneous case, the conditional probability distribution 
𝑃𝑃(𝑌𝑌|𝑋𝑋) is also different for the source and target task, i.e. 𝑃𝑃(𝑌𝑌𝑆𝑆|𝑋𝑋𝑆𝑆) ≠  𝑃𝑃(𝑌𝑌𝑇𝑇|𝑋𝑋𝑇𝑇). 

7.3.3 Towards few-shot learning 
While transfer learning can improve performance of black-box methods, the way the black-box 
learning problem is posed is incredibly naïve. The most obvious flaw in the formulation is that 
the task is episodic. An episodic task refers to a problem which has a clearly defined initial and 
terminal state. An example of an episodic task is chess, where an individual game ends in check-
mate. Once the game has ended (i.e. after checkmate), a new game begins and the previous game 
does not affect future games. However, if an agent were to learn on raw time series, it would 
have no clue as to when one game ends and when the next one starts. In other words, by defining 
a static temporal window, the black box method formulated above is forced to also consider data 
from previous episodes in its learning. This further complicates an already complex learning 
task.  

The realization of the episodic nature of the task allows for meaningful features to be extracted 
from the time series. More specifically, four features are extracted in this example: (1) initial 
state of the storage after a reheat cycle (i.e. the mid-point temperature), (2) time elapsed since 
the last reheat cycle, (3) hot water consumption since the last reheat cycle, and (4) ambient tem-
perature conditions (only for the heat pump model). This leads to a feature set which is roughly 
two orders of magnitude lower than for raw time series learning, which additionally also help 
reduce the dimensionality of the input feature vector and circumvents the curse of dimensional-
ity. On the other hand, manual feature extraction detracts from the purely data-driven motivation. 
However, it compensates for this limitation by further improving the interpretability of the 
learned model, which is a common problem for black-box methods. 

The initial predictions of the neural network before substantial amounts of data have been 
gathered is usually a contentious issue (as shown in Fig. 36). Two methods can be brought to 
deal with this. The first is a domain specific algorithm which makes use of constraints imposed 
on the function learnt by the neural network. These constraints include: 
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1. Temperature is assumed to monotonically increase with storage height; thus 𝑇𝑇ℎ ≤ 
𝑇𝑇ℎ+𝑚𝑚  ∀𝑃𝑃 ≥ 0. 

2. The water temperature in the storage is always bounded between a lower bound 𝑇𝑇𝑟𝑟 and 
an upper bound 𝑇𝑇𝑜𝑜 , i.e. 𝑇𝑇𝑟𝑟 < 𝑇𝑇𝑚𝑚 < 𝑇𝑇𝑜𝑜 [℃] ∀ 𝑃𝑃 where 𝑇𝑇𝑟𝑟 = 0 [℃] and 𝑇𝑇𝑜𝑜 = 100 [℃]; 
even stricter bounds can be introduced by observing that a residential water vessel in-
variably operates between 10 < 𝑇𝑇𝑚𝑚 < 65 [℃] ∀ 𝑃𝑃 

3. 𝑇𝑇𝑚𝑚 → 𝑇𝑇𝑟𝑟  ∀𝑃𝑃 as 𝐷𝐷 (the cumulative water consumption) →  ∞ (without reheating the ves-
sel), where 𝑇𝑇𝑟𝑟 is the lower bound as defined above 

The second is a principled transfer learning approach which operates either through feature or 
parameter sharing (Ruder et al., 2017) (Pan et al., 2010). These approaches are explained in 
greater detail in the results section. 

Finally, it is important to keep in mind what the neural networks are actually learning. The stor-
age model learns the temperature distribution in the vessel as a function of thermodynamic and 
mixing losses, given a certain initial condition. This temperature distribution is then thresholded 
to obtain a state of charge (i.e. the amount of hot water above a certain temperature threshold). 
The heating model, on the other hand, learns the amount of energy which would be required to 
reheat the storage in a given state of charge and ambient conditions.  

7.4 Results  
This section presents results from applying the formulation presented above on the two different 
hot water systems. First,the application of the algorithm to the storage model is discussed, which 
is, in a way, an easier learning problem because of an abundance of data. The heating model is 
more difficult to learn accurately because the training examples available for this is typically 
two orders of magnitude fewer than for the storage model. This is because, in a day, there are 
only a few – usually not more than two or three – reheat cycles but the temperature recordings 
are made every 5 to 15 minutes. 

7.4.1 Storage model 
Benchmark black-box 
Fig. 37 presents the result of predicting the mid-point temperature in the storage vessel with a 
neural network trained on increasing amounts of gathered data in a household (1 week, 4 weeks 
and 32 weeks). While the performance improves over time as more data becomes available to 
the neural network, the predictive accuracy continues to be low, as evidenced by the poor corre-
lation between predicted and observed temperatures. 

 

 
Figure 37 Storage vessel model accuracy with raw time series learning for increasing 

amounts of data (1 week, 4 weeks, and 32 weeks). 
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Transfer learning with benchmark 
The realization that all individual households are trying to learn the same dynamics model 
(within the same project) can be leveraged to apply transfer learning. In this case, the gathered 
features from individual households are combined together to form a single feature vector which 
is then used to learn the shared dynamics model for all households. As seen in Fig. 38, increasing 
the data weeks used for learning a model improves its accuracy (or the variance it can explain in 
the observed data) but only up to a certain extent before asymptoting. In this way, only one of 
the three benefits (improved initial performance) of transfer learning is achieved (Fig.36). 

 
Figure 38 Storage model accuracy with raw time series learning incorporating transfer 

learning – data-weeks here represents amount of data in weeks used to train the neural net-
work, the source of the data can be from different households achieving transfer. 

Extracting features 
By reducing the dimensionality of the input feature vector from 288 to 3 (i.e. applying the feature 
transformations as explained in the previous section), the learning problem is simplified consid-
erably. This is reflected in the improved accuracy of the learned storage model. It also consider-
ably simplifies the calculation of state of charge from the predicted temperature. The extracted 
state of charge according to the learned model is presented in Fig. 39 as a function of elapsed 
time and hot water consumption. It is obvious that the neural network has not converged to a 
reliable model after only a single week of data collection for a single household. However, either 
increasing the collected data for the single household or increasing the number of households 
but limiting the data gathering period accelerates the learning process and allows a reliable dy-
namics model to be learnt. 

 
(a)     (b)   (c)   (d) 

Figure 39 Estimated state of charge as a function of user hot water consumption and ther-
modynamic losses; the models having been learned with: (a) one week of data for one house-
hold; (b) 32 weeks of data for one household; (c) one week of data for 32 households; (d) 32 

weeks of data for 32 households. 
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Adding constraints 
While the model converges after only a single week when the neural network has access to data 
from multiple households, this is not always the case. For instance, as opposed to the 32 houses 
used for learning the state of charge profile in Fig. 39, only four to eight houses were available 
in the second project considered in this example. To learn a reliable dynamics model in this case 
would require a few months at least. However, by leveraging constrained learning, as explained 
in the previous section, it is possible to learn a reliable model in a very brief amount of time (and 
data). These results are highlighted in Fig. 40 where it is evident that a smooth state of charge 
profile is obtained after only a single week of data collection. These state of charges are, on 
average, accurate to within 10% of the actual state of charge in regions of interest. 

 
(a)    (b)   (c)   (d) 

Figure 40 Estimated state of charge as a function of user hot water consumption and ther-
modynamic losses after constraints have been imposed; the models having been learned with: 
(a) one week of data for one household; (b) 32 weeks of data for one household; (c) one week 

of data for 32 households; (d) 32 weeks of data for 32 households. 

It is also instructive to summarize the effect of increasing agency and time on the learning model 
accuracy. This is highlighted in Fig. 41 where it is easy to see that increasing agency and data 
collection have largely the same effect. This means that gathering data for the learning function 
for months in a single household can be replaced by collecting data in multiple households for a 
very brief amount of time. Of course this result holds only for homogeneous devices, but it can 
also be extended to heterogeneous devices, as we show in the next section. It is also fairly easy 
to see that while transfer learning allows for a much improved initial performance, the asymp-
totic performance is not too different.  

 
Figure 41 Mean Absolute Error [℃] as a function of increasing data collection (weeks) and 

agency (households). 
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7.4.2 Heating model 
As mentioned previously, the biggest challenge to model the heating element accurately arises 
from the very limited training dataset the learning algorithm has access to. Practically, this means 
that the learning algorithm has ten or fewer training examples after a week of interacting with 
the system. For data-intensive algorithms like deep neural networks, this leads to severe overfit-
ting (Goodfellow et al. 2016), especially when the deep neural network is using the raw time 
series as its input feature vector. In this case, the dimensionality of the input feature vector is 
one to two orders of magnitude higher than the number of examples available for learning. This 
seldom, if ever, works well in practice. Indeed, the neural network failed to converge using raw 
time series data alone, with or without transfer learning. 

Extracting features 
As before, to model the heating element, the extracted input feature vector is fed to the neural 
network which predicts the energy required to reheat the storage given different ambient condi-
tions. On average, this energy is between one and two kWh’s (however this can vary considera-
bly as a function of the storage’s state of charge and the ambient conditions). Unlike the raw 
learning case, the model successfully learns to predict the heating element’s behavior. This pre-
diction grows progressively better as the agent observes more data. Additionally, the effect holds 
also as the number of agents (or households involved in the learning process) increases. How-
ever, unlike the case of the storage element, the heating model continues to improve until all the 
gathered data has been used. In this case, transfer learning leads to both improved initial and 
asymptotic performance (as highlighted earlier in Fig. 36). It is important to note that without 
transfer, a single household would never have access to almost 20 years of data collected across 
different devices (which is the amount of data used in this example to make predictions). This 
information is highlighted in Fig. 42 where it is easy to see that the error rate continues to drop 
as we increase the amount of data (either through observation period or the number of house-
holds).  

 
Figure 42 Mean Absolute Error [kWh] as a function of increasing data collection (weeks) 

and agency (households). 

 

An interesting caveat arises here as, unlike for the storage model, the model improves more 
significantly for a longer data gathering period with fewer households than it does with addi-
tional households with fewer data gathering (i.e. learning a model with data collected for one 
household over 32 weeks results in a better model than one learnt with data collected over 32 
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households for one week). This is because of better exploration of ambient conditions over 32 
weeks (i.e. the model observes heat pump performance under different conditions) than it does 
in only one week, even though multiple households are observed.  

Induction  
The heating model was eventually able to learn an extremely accurate representation of the heat 
pump (with a relative error less than 10% which is normally distributed). However, it takes al-
most 20 data-years to do so, implying that a more data-efficient representation can further im-
prove real world learning performance. In the case of the storage model, this was done through 
constrained learning. However, instead of constraining model output – which requires some do-
main knowledge – it is also possible to achieve the same effect by induction. This refers to the 
fourth case of transfer learning highlighted above, where the conditional probability distribution 
of the source and target are different.  

Induction can be achieved by making use of the data gathered in one project in a different project 
where the hot water system is different by nature. In practice, induction learning can be achieved 
in one of two ways: 

1. Feature sharing: where the input and output feature dimensionality is the same for the 
source and target, it is possible to simply combine the training features of the source and 
target to learn a single, unified representation (Pan et al., 2010). It is possible to further 
select the features based on some metric for similarity or diversity etc. (Ruder et al., 
2017). 

2. Parameter sharing: it is also possible to use the neural network already trained on the 
source task as the initialization for the target. In this case, the neural network weights 
are fine-tuned with target data (i.e. learning is done with a very small learning rate), 
while possibly freezing one or more layers in the neural network to preserve already 
learnt knowledge (Pan et al., 2010). 

Achieving transfer with either of these two approaches is an active area of research and repre-
sents state of the art in many computer vision and natural language processing tasks. In this 
example, the performance of both types of induction is compared and from Fig. 43, it is obvious 
that parameter induction (i.e. initializing the neural network with previously trained data) out-
performs naïve feature induction. Both are substantially better than the model learnt using just 
the target data (i.e. project 2). This effect is especially pronounced in the early stages of data 
collection.  

In this case, the workflow for feature sharing is as follows: the training data gathered from pro-
ject 1 is combined with training data from project 2, which is then used to train a neural network. 
The workflow for parameter sharing is more involved as first a neural network is trained on the 
already available data from project 1. Then this neural network is used as the initialization for 
project 2 where observed data is used to fine-tune the neural network weights through backprop-
agation (Goodfellow et al. 2016). Results of both these induction learning algorithms are com-
pared with a neural network which is initialized randomly but then sees only the target data (i.e. 
for project 2). It is obvious that pre-training the neural network drastically speeds up real world 
performance and reduces data requirements by over an order of magnitude making it realistic to 
model the heating element through sensor data alone. 
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Figure 43 Mean Absolute Error [℃] as a function of increasing data collection (weeks) and 
different learning frameworks 

Thermodynamic validation 
While the prediction error in this case is much lower than the benchmark, it is not obvious 
whether the neural networks learned using data alone can generalize beyond the training and test 
set. For this, a specifically created test dataset was considered based on evaluating thermody-
namic principles. The purpose of this test is to identify whether the model has learnt three prop-
erties based on known thermodynamics: 

1. As the ambient temperature increases, energy consumption of the heat pump decreases 
(𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎 ↑, 𝐸𝐸� ↓) 

2. As the temperature difference between the start and end of the reheat cycle increases, 
energy consumption of the heat pump increases (∆T ↑, 𝐸𝐸� ↑) 

3. As the target temperature increases, energy consumption increases (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ↑, 𝐸𝐸� ↑) 

As evident from Fig. 44, the model learnt without induction has been able to learn only two of 
the three fundamental properties correctly after 32 weeks of data collection. This includes argu-
ably the most important property that a higher temperature difference between start and end 
temperature leads to a higher energy consumption. On the other hand, agents making use of 
induction were able to learn (retain) all three properties correctly from the source task within 
four weeks.  

 



72 
 

 
(a) (b) 

Figure 44 Results of learning with and without induction learning for the heating model; 
results shown here are to visualize the trends of the learned model for (a) with induction for 2 
agents after 4 weeks, and (b) without induction with 2 agents after 32 weeks; the heating tem-
perature (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 is limited to 55℃, above which a booster heater is used to reheat the hot water. 

 

7.4.3 Extension to active control 
The models learned in this way were combined with a smart controller to improve the energy 
efficiency of operation in real world Net-Zero Energy Buildings in The Netherlands (Kazmi et 
al., 2019). After 11 months of operation, the smart controller resulted in savings of, on average, 
over 200 kWh / household. In relative terms, this was over 20% of the energy required for the 
domestic hot water production and reflected the importance of learning accurate dynamics mod-
els from data, i.e. without incurring the costs of domain expertise or sensing. The key results of 
this control are highlighted in Fig. 45, which shows that the energy efficiency group consistently 
consumed less energy for hot water production than their counterparts employing a naïve rule-
based controller. These results were generated after accounting for differences in individual 
household hot water demand and are aggregated for tens of houses in both category. 

 
Figure 45 Results of using the developed models to active control of hot water systems. 
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7.5 Conclusion 
This example has presented the methodology and results for modelling a hot water system in 
detail. The proposed methodology is completely generalizable and avoids most of the limitations 
of existing white- and black-box methods. The proposed transfer learning technique is, in a way, 
similar to existing grey box models in the sense that an existing model is calibrated with newly 
acquired data. However, the innovative part is that the initial model is completely data-driven, 
thereby removing both human dependence and bias from the modelling process.  

The models thus learned can be used seamlessly to both predict and realize energy flexibility in 
practice. For instance, the developed model has been used extensively in The Netherlands in a 
large scale H2020 Project REnnovates. The learned models were employed first in a planning 
step to determine whether or not grid reinforcement would be required with continuing electri-
fication of heat. This will become a more important concern in the future as many neighbour-
hoods sever the connection to the gas grid and opt for electric heating and hot water production. 
Concurrently, the models described in this study can also be used to estimate whether the flexi-
bility inherent in the hot water systems can provide adequate demand response to the grid. In 
doing so, it allows the practitioner a straightforward way to analyse both the causes and potential 
solutions to the electrification of heat and proliferation of distributed energy resources. As a 
practical example, employing the flexibility predicted by the models described in this study re-
sulted in savings of many thousands of euros and substantial amounts of greenhouse gas emis-
sions, without compromising user comfort in any way. 
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8.1 Modelling objective  
This study focuses on the design of a method that can be used to compare the energy flexibility 
of the performance of overall building designs, including all elements together from thermal 
mass, electrical storages and the building energy system. Hence, it provides the opportunity to 
compare different designs in terms of energy flexibility and other desirable performance indica-
tors.  

This study proposes a computational performance assessment methodology that integrates rele-
vant energy flexibility indicators regarding energy matching and grid interaction. Furthermore, 
this study shows how the assessment methodology can be used to design future-proof grid inde-
pendent buildings by considering various policy scenarios (support schemes). The proposed de-
sign optimization approach is demonstrated using a case study of a Dutch (residential) house 
and the building owner as the main decision maker/stakeholder.  

The energy flexibility of single buildings is defined as the ability of a building to manage its load 
and generation in a way to increase self-consumption and reduce dependency of the energy grid. 
This methodology integrates uncertainties due to policy scenarios in multi criteria assessment to 
aid decision makers in selection of robust design options.  

8.2 Building and system description  
The simulation uses a detailed TRNSYS model of the house, the grid-tied solar system (com-
posed of PV panels, charge controller, inverter and battery bank), as well as an all-electric 
HVAC system (Air to water heat pump system).  
 
In this study a typical Dutch residential, semi-detached terraced house from 1975, [1] is chosen 
as the case study building. The building is a heavyweight three-floor construction as shown in 
Figure 46. Each floor is considered as one thermal zone for calculating the temperature and 
energy demand of each zone. The living room and kitchen at the ground floor form the first zone, 
three bedrooms in the first floor constitute the second zone, and the attic in the second floor is 
the third zone.  

Heating is supplied by an air source heat pump and the building is ventilated with balanced 
mechanical ventilation with a heat recovery unit. Natural ventilation (free cooling) is used in 
summer instead of mechanical cooling [2].  

The domestic hot water (DHW) needs are met either by a standalone solar thermal collector sys-
tem with an auxiliary heater or a gas boiler. In case of solar thermal collector a storage tank of 
200 L with an auxiliary immersion heater of 2 kW capacity is used in this study. 

A photovoltaic system with a module efficiency of 18.3% and an inverter with a conversion 
efficiency of 97.5% were chosen in this study and modelled in TRNSYS. Each panel has a gross 
surface area of 1.67 m2 and a peak capacity of 260 Wp.  

8.3 Method and modelling tools 
The proposed design optimization approach consists of three main steps. These steps are pre-
sented below: 

1a. Identify the decision makers’ preferences and define the relevant performance indicators 
including energy matching and grid interaction performance indicators. 

1b. Define the design space, e.g., define the possible renovation measures that should be con-
sidered (variations in building envelope properties, HVAC systems, size of onsite-energy 
generation system and storage systems). 

https://www.sciencedirect.com/topics/engineering/solar-thermal-collector
https://www.sciencedirect.com/topics/engineering/auxiliary-heater
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1c. Formulate the future scenarios, e.g., in this study based on the various support schemes. 

2. Predict the performance of each design solution in the design space using building per-
formance simulation and calculate the performance indicators across all future scenarios. 

In this study the performance of each design is predicted using the building performance simu-
lation tool TRNSYS. The performance of each design is assessed based on the defined perfor-
mance indicators and the energy matching and grid interaction performance indicators. The per-
formance indicators are often conflicting, therefore, a multi-objective optimization approach 
with the objectives to minimize (or maximize) each indicator is applied. For example, the build-
ing owner would like to maximize thermal comfort, but at the same time, he would like to min-
imize the operational costs. 

3. Analyze and present future-proof building designs with low grid dependency using multi-
criteria decision making. 

Due to the conflicting nature of most indicators, a set of Pareto optimal solutions is obtained for 
each scenario. This enables the decision maker to perform a trade-off among alternative design 
solutions based on the preferred performance indicators. Depending on the selected performance 
indicators, the set of Pareto optimal solutions can vary per scenario.  

It is assumed that the probabilities of the occurrence of the scenarios is unknown and hence, it 
is essential to assess the performance robustness of the design solutions considering all scenar-
ios. The minimax regret method [2] is used to calculate the performance robustness of each 
Pareto. The Pareto solutions are presented using scatter plots and box plots to show the values 
for each design parameter. 

 

 

 

 

 

 

Figure 46 Layout of a typical Dutch terraced house, showing different floors, front and back 
view of the building. All dimensions are in mm. 
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8.3.2 Identify decision makers and performance indicators 
The decision maker of this case study is the homeowner. The homeowner wants to renovate his 
house and requires a comfortable indoor environment at low investment and operating costs. 
The considered performance indicators are described in Table 8. In order to assess the energy 
matching and grid interaction of each design the indicators, as described in Table 9, are defined. 

 
Table 8 Overview of thermal comfort and costs performance indicators. 

Name  Mathematical description Characteristic 

 

Weighted overheating 
hours (WTOH)  

𝑊𝑊𝑇𝑇𝑊𝑊𝑊𝑊 =  ∆𝑇𝑇 ∗ ℎ 

ℎ: total number of hours exceeding the 
allowable maximum indoor tempera-
tures 

∆𝑇𝑇:degree of temperature excess 

 Indicating number and magnitude of  
hours exceeding the allowable indoor 
temperatures, based on maximum and 
minimum acceptable indoor tempera-
tures as proposed on [3] 

 

 

Operational cost (OC) 

𝑊𝑊𝑂𝑂 = (𝐸𝐸𝑖𝑖𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎 ∗ 𝑃𝑃𝐸𝐸 + 𝑁𝑁𝑁𝑁 ∗ 𝑃𝑃𝑁𝑁𝑁𝑁)
− (𝐸𝐸𝑖𝑖𝑎𝑎𝑖𝑖 ∗ 𝑃𝑃𝑖𝑖𝑎𝑎𝑖𝑖) 

 𝐸𝐸𝑖𝑖𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎 : imported electricity from 
grid, 𝑃𝑃𝐸𝐸: price of electricity, NG: natural 
gas, 𝑃𝑃𝑁𝑁𝑁𝑁: price of natural gas, 

 
𝐸𝐸𝑖𝑖𝑎𝑎𝑖𝑖: type 

of energy receives incentive, 𝑃𝑃𝑖𝑖𝑎𝑎𝑖𝑖 : rate 
of incentive  

Annual energy costs for gas and electric-
ity consumption. Exported or self-con-
sumed electricity is also considered in 
the calculation of operating cost, de-
pending on the policy scenario  

Additional investment 
cost (𝐼𝐼𝑂𝑂𝑎𝑎) 

𝐼𝐼𝑂𝑂𝑎𝑎=∑ 𝐼𝐼𝑂𝑂𝑎𝑎𝑎𝑎𝑜𝑜𝑖𝑖𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑖𝑖𝑜𝑜𝑎𝑎𝑜𝑜 −
 ∑ 𝐼𝐼𝑂𝑂𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑟𝑟𝑜𝑜𝑖𝑖𝑜𝑜𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎 

Additional amount of required invest-
ment by a design compared to the refer-
ence building  

 
Table 9 Overview of energy matching and grid interaction performance indicators. 

Name  Mathematical description Characteristic 

On-site Energy 
Matching (OEM) 

𝑑𝑑𝑇𝑇𝑃𝑃𝐸𝐸 − 𝑣𝑣𝑃𝑃𝑇𝑇𝑑𝑑𝑑𝑑𝑃𝑃𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑇𝑇 [𝑘𝑘𝑊𝑊ℎ]
𝑃𝑃𝑇𝑇 − 𝑑𝑑𝑃𝑃𝑡𝑡𝑇𝑇 𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑇𝑇 [𝑘𝑘𝑊𝑊ℎ] 

Self-consumption and on-site generation are inte-
grated over summer months  

Describe the degree of the utiliza-
tion of on-site energy generation re-
lated to the local energy demand 
[4]. 
 Show the effectiveness of on-site 
generation, how often demand is 
lower than supply and how often 
supply is lower than demand. 

On-site Energy 
Fraction (OEF) 

𝑑𝑑𝑇𝑇𝑃𝑃𝐸𝐸 − 𝑣𝑣𝑃𝑃𝑇𝑇𝑑𝑑𝑑𝑑𝑃𝑃𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝑇𝑇 [𝑘𝑘𝑊𝑊ℎ]
𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐷𝐷𝑃𝑃 𝑡𝑡𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑡𝑡 [𝑘𝑘𝑊𝑊ℎ]  

 

Self-consumption and energy demands are inte-
grated over winter months  

Grid dependency 
[5] 

𝛤𝛤𝑐𝑐𝑃𝑃𝐷𝐷𝑇𝑇𝐸𝐸 𝑇𝑇𝑃𝑃𝑣𝑣ℎ𝑃𝑃𝑇𝑇𝐷𝐷𝑇𝑇 ≠ 0
𝛤𝛤𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃  

𝛤𝛤 : number of time 

Represents the frequency of either 
positive or negative power ex-
change between a building and the 
power grid. 

Capacity factor  [6] 𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐷𝐷𝑃𝑃 𝑇𝑇𝑃𝑃𝑣𝑣ℎ𝑃𝑃𝑇𝑇𝐷𝐷𝑇𝑇 𝐷𝐷𝑃𝑃𝑡𝑡ℎ
 𝑡𝑡ℎ𝑇𝑇 𝐷𝐷𝐸𝐸𝑃𝑃𝑡𝑡 [𝑘𝑘𝑊𝑊ℎ]

𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃 𝑣𝑣𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑣𝑣𝑡𝑡𝑃𝑃𝑃𝑃𝑇𝑇 
𝑣𝑣𝑃𝑃𝑐𝑐𝑃𝑃𝑣𝑣𝑃𝑃𝑡𝑡𝑃𝑃 [𝑘𝑘𝑊𝑊] ∗ 𝑐𝑐𝑇𝑇𝐸𝐸𝑃𝑃𝑃𝑃𝑡𝑡[ℎ]

 

 

Indicates the total energy that has 
been exchanged with the grid (ei-
ther supply to or import from the 
grid) in ratio to nominal connection 
capacity 

 

8.3.3 Defining design space  
Different design options, as shown in Table 10, are varied to form the design space. In order to 
satisfy different building standards, design options related to building envelopes such as window 
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type, insulation level of envelopes and infiltration rates are altered at the same time and formed 
different renovation packages.  First renovation package, RP1, meets the energy label B require-
ments. RP2 is based on the current Dutch building standard [7]. RP4 and RP5 can meet Dutch 
zero-energy buildings standard [1] and a Passive house standard in respect. Hence, the air to 
water heat pump system is sized for each building envelope package. Other design options such 
as size of PV system, size of electrical battery and type of DHW system are varied for all building 
envelope packages. 

PV panels with a module efficiency of 18% and an inverter with a conversion efficiency of 97.5% 
are chosen for the on-site energy generation system [8]. The size of PV system is varied from 
5m2 to 25 m2 for all building envelope packages where the maximum size of PV system is limited 
by the available roof area on the south surface. Each panel has a gross surface area of 1.67 m2 
and a peak capacity of 260 Wp. As it is shown in Table.9, the sizes of the electrical battery 
capacity [9], with 2.5-3.3 kW charge and discharge power, is changed for each building envelope 
packages. 

Two different systems are assumed to meet the domestic hot water (DHW) needs, one is a 
standalone solar domestic hot water system with an electrical auxiliary heater and the other one 
is a gas boiler.  Both solar thermal collectors and photovoltaic panels are placed at a tilt angle of 
43° facing south, which is also the slope of roof. 

Table 10 Design parameter options considered in this study 

Renovation package  Reference  RP1  RP2  RP3  RP4 RP5 
RC-floor, m2k/W  1.3   2.5 3.5  5  6  10  
RC-wall, m2k/W  1.3   2.5  4.5  7  8.5  10  
RC-roof, m2k/W  1.3   2.5  6  8  10  10  
Window U value, W/m2K  5.2, 2.9   1.8  1.43  1.01  0.86  0.52  
Window g value  0.81, 

0.75  
 0.61  0.60  0.38 0.59  0.58  

Infiltration, dm3/sm2  1  0.62 0.5 0.4 0.15 0.1 
ASHP nominal capacity, kWth 9.1   7.4 6.0 4.9 4.0 3.5 
PV system, m2  5, 10, 15, 20, 25 
Electric battery, kWh  0, 2.5, 5, 7.5, 10, 12.5, 15  
DHW system  Solar thermal collector (STC) , HR 107 gas boiler (GB)  

 

In this study, the deployed control strategy for load managing between the electric storage, the  
PV system, the demand and the grid first prioritize to use the produced energy by the PV system 
to satisfy the demand and then the electric battery will be charged with surplus on-site produced 
energy.   In this mode, if there is no demand and electric storage is fully charged, the surplus 
electricity will be exported to the grid. In this control strategy, when there is no on-site produced 
energy, the system supplies the required load by prioritizing to use the energy stored in battery 
and then import from the grid. This reduces the dependency on the grid, but it will not necessarily 
minimize the electricity bill since discharging the battery during off or mid peak hours is not 
always economically beneficial.  

8.3.4 Define future scenarios 
Various types of support schemes are currently in operation in different countries. Most of the 
European countries have initially started with production-based support schemes like feed-in 
tariffs (FiT). In this scheme, the PV system owner receives a fixed rate for each unit of electricity 
(kWh) fed into the power grid.  Other support schemes are based on self-consumption support 
mechanisms. These schemes are being increasingly promoted in many countries, among others 

https://www.sciencedirect.com/topics/engineering/inverter
https://www.sciencedirect.com/topics/engineering/feed-in-tariff
https://www.sciencedirect.com/topics/engineering/feed-in-tariff
https://www.sciencedirect.com/topics/engineering/self-consumption
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Germany, Italy, Denmark, Belgium, etc. [10].  In these schemes, energy saving and the use of 
on-site generated electricity are rewarded instead of rewarding the export of electricity.  In these 
type of schemes, typically the exported electricity is sold at low prices whereas the price of the 
purchased electricity is high. Therefore, a mismatch between on-site generation and demand can 
cause a financial loss to the PV owner. Thus when these schemes are in place, it is beneficial for 
the PV owner to match the building's on-site electricity generation with the electricity demand 
as much as possible. 

The scenarios below are selected to give an overview of possible future policies ranging from 
production-based support to self-consumption based support schemes. In addition to the consid-
ered scenarios, there are investment subsidies, which pay a part of the initial purchase and in-
stallation cost of an energy system, without considering the actual operation after the installation 
[11]. These subsidies are not considered in this case study. The considered scenarios are as fol-
lows: 

1. Net metering scenario:  energy consumption imported from grid and on-site produced 
energy exported to the grid are measured and their difference determines the electric 
bill, though negative bills might not be allowed. In this system, exported energy is of 
equal value to imported energy [11].   

2. Guaranteed FiT: a fixed rate is paid for each unit of electricity generated and supplied 
to the grid.  

3. Self-consumption incentives: provide money if locally generated energy being used on-
site, instead of being exported to the grid.  

4. NO incentive: there will be no incentive for energy fed into grid or used locally. 

 
Table 1 Overview of the policy scenarios and rate of incentives used in this study 

Type of sup-
port scheme 

Policy scenario Rate of incentive (c€/ kWh) Electricity 
price (c€/ 

kWh) 

 Pr
od

uc
tio

n-
 b

as
ed

 in
-

ce
nt

iv
e 

 
 
Net- metering  

    17.06  c€
kWh electricity fed

 to the grid 

  As long as : 

 ∑ 𝑇𝑇𝑃𝑃𝑐𝑐𝑃𝑃𝐸𝐸𝑡𝑡𝑇𝑇𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎   ≤
∑ 𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃𝐸𝐸𝑡𝑡𝑇𝑇𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎  
 

17.06 

Guaranteed FiT  8.53  c€
kWh electricity fed

 back to grid

 17.06 

Se
lf-

co
n-

su
m

pt
io

n 
pr

om
ot

in
g Self- consumption 

based  
 17.06  c€
kWh electricity demand met

 by own generatio

  17.06 

 
No incentive  

0 𝑖𝑖€
kWh electricity either fed to 
the grid or consumed locally  

  17.06 
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8.4 Results  

8.4.1 Performance prediction and analysis of the design solutions 
The performance of each design solutions is calculated for all four policy scenarios. However, 
in this section, first the results are described for the current energy policy scenario in The Neth-
erlands, the net-metering scenario. The results for the other scenarios including the robustness 
analysis is presented in the next section. 
Figure 47a shows the additional investment cost, the operational cost and the weighted over 
heating hours of all design solutions. Each dot represents the performance of a unique design 
solution, i.e., a unique combination of the building envelope and infiltration rate, PV system size 
and electrical storage capacity. To get a better insight of the design variants, RC-values of the 
walls, the size of PV system and electrical storage capacity are indicated with colors in the scatter 
plots in Figures 47b, 47c and 47d. 
The figures show that the operational cost decreases with higher RC-values and lower infiltration 
rates, while the number of overheating hours and additional investment cost increases. One can 
easily distinguish the effect of the size of the PV system on the operational cost; however, the 
storage capacity does not influence the operational cost for this policy scenario. In this scenario 
the user will sell the surplus of on-site produced electricity to the grid at the same rate of buying 
from the grid. Hence, under this policy scenario, the grid is used as a virtual, unlimited electrical 
storage device. The designs with the variations in electrical storage capacities only differ in in-
vestment cost. 
Figure 48 shows the energy matching and grid interactions indicators of the design space against 
the operational cost and the additional investment cost. Comparing Figures 48a and 48b and the 

Figure 47 The investment cost and operational cost for total energy consumption of all de-
signs solutions under net-metering scenario. 
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design parameter variations in Figures 47b, c and d, gives some insight about the self-consump-
tion potential of each design solution. The designs with a small PV system reach a higher OEM 
regardless of the insulation level and infiltration rate of the building (which mainly decide the 
energy consumption of the designs). However, this happens at the expense of higher operational 
cost in comparison to the designs with larger PV systems. Designs with high insulation levels 
[8.5-10 m2K/W] and low infiltration rates show better OEF, since these designs have a very low 
energy consumption, especially when they are equipped with high number of PV panels and a 
high electrical storage capacity. These designs operate at very low operational cost; however, 
they require very high investment cost. 

Figures 48c and 48d illustrate the performance of design solutions regarding the frequency and 
the magnitude of the traded power with the energy grid. Figure 48c shows the effect of the 
storage capacity on number of times that a design will interact with the grid; designs without 
electrical energy storage are almost fully dependent on the grid [grid dependency ≥ 0.9]. 
 
The figure shows that the dependency on the grid can be reduced to less than 0.5 for the build-
ings with low energy consumption [8-10 m2K/W] accompanied with large PV systems [20-25 
m2] and high storage capacities [10-15 kWh]. The high on-site energy generation can easily 
meet the demand of these buildings, while the high storage capacity helps to bridge the gap 
between demand and generation instead of exporting the surplus electricity to the grid. 
The effects of building insulation level and the size of the PV system on the capacity factor can 
be observed in Figure 48d. Designs with high insulation levels typically have low power 
consumption for space heating demand and consequently the sized air to water heat pumps have 
low power capacity. These designs along with a small sized PV system use the minimum 
capacity of the designed power with the grid. 
Overall, the designs with low RC-values and high infiltration rates show low overheating hours, 
but at the expense of high operational cost. Because of their high-energy consumption, they 
utilize a higher ratio of on-site produced energy (high OEM). However, this is not enough to 
meet a noticeable amount of energy consumption (low OEF) and consequently they show high 
and frequent interaction with the grid to satisfy the demand. Similarly, the designs with high 
RC-values and low infiltration rates (e.g. passive house) are characterized by very low energy 
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demand, but higher overheating hours. These designs can reach high OEF and very low capac-
ity factors. However, because of the low energy consumption, they do not utilize the on-site 
production efficiently (low OEM). The designs with intermediate RC-values [2.5-4.5m2K/W] 
and infiltration rates are having optimal performance in terms of thermal comfort and show 
moderate operational and investment costs. These designs can utilize on-site production effi-
ciently to meet the demand when they are equipped with appropriately sized of PV systems and 
storage capacities. 
The Pareto solutions (the trade-off solutions; the solutions that perform equally good) can be 
calculated considering various sets of performance indicators. The dark blue coloured dots in 
Figure 49.1 show the Pareto solutions in case the homeowner is only interested in operational 
cost, investment costs and thermal comfort. The cyan coloured dots shows the Pareto solutions 
in case the homeowner only considers the energy matching and grid interaction indicators. As 
expected, these two sets of Pareto solutions are quite different under this net-metering scenario, 
since the scenario does not provide any (financial) incentive to the homeowner to invest in a 
house with low grid dependency.  

8.4.2 Building performance considering all policy scenarios 
The previous section showed that there was no incentive for the homeowner to consider low 
grid-dependency. However in the future the policy scenario is likely to change. This section 
shows the performance of the design solutions considering all four policy scenarios. Further-
more, it is discussed which design solutions are the most robust performing considering these 
scenarios. 
As discussed above, Figure 49.1 shows the two Pareto solution sets considering policy scenario 
1. The Pareto sets for scenarios 2, 3 and 4 are presented in Figures 49.2, 49.3 and 49.4.  

Figure 48 Two sets of Pareto solutions are presented per graph: dark blue dots represent the 
Pareto solutions based on operational cost, investment cost and overheating hours. Cyan colored 
dots represent the Pareto solutions based on the energy matching and grid. 

The figures show that the gap between the two Pareto sets is more significant in scenarios 1 
and 2 (Figures 49.1 and 49.2), which indicates that the solutions with low grid-dependency are 
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not (financially) attractive to the homeowner under these production-based incentive policies. 
The reason is that, in these scenarios by selling back the produced energy to the grid, the home-
owner can significantly reduce the operational cost. The two sets of Pareto solutions come 
closer in Figure 49.3, the self-consumption based incentive, and even closer in Figure 49.4, 
where there is no incentive at all. In these scenarios the more profitable designs for the home-
owner are also the ones with higher self-consumption, i.e., lower grid-dependency 
Figures 50 and 51 present with colours the values of the design parameters for the solutions of 
both Pareto sets. The Pareto solutions based on additional investment cost, operational cost and 
overheating hours are represented with the coloured dots with light-grey edges (from here on 
referred to as the homeowner set).  

Figure 49  Two sets of Pareto solutions for the production-based incentive policies (scenarios 1 
and 2). Dots without edge represent solutions based on additional investment cost, operational 
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cost and overheating hours. Dots with black edged-lines represent solutions based on energy 
matching and grid interaction.  

Figure 50 Two sets of Pareto solutions for the self-consumption-based incentive policies (sce-
narios 3 and 4). Dots without edge represent solutions based on additional investment cost, op-
erational cost and overheating hours. Dots with black edged-lines represent solutions based on 
energy matching and grid interaction. 

 
The Pareto solutions based on energy matching and grid interaction are represented with col-
oured dots with the black edges (from here on referred to as the energy flexibility set or EF set). 

It can be inferred from Figures 50a, 50b, 51a and 51b that the Pareto solutions for the homeowner 
set are dominated by intermediate insulation levels [2.5-4.0 m2k/W ] across all scenarios, i.e., 
the blue coloured dots dominate the Pareto fronts. These designs show a trade-off between ther-
mal comfort and operational and investment cost. The Pareto solutions of the EF set show a 



86 
 

larger variation of insulation levels; however, the majority of the designs is based on high insu-
lation levels and low infiltration rates. In production-based incentive policies, Figure 50, the 
operational cost decreases with larger PV systems. Since there is a financial compensation for 
every kWh of on-site produced electricity fed into the grid, the solutions in the homeowner set 
show zero storage capacities and large PV systems. Figure 51 shows that in the self-consump-
tion-based policies, the size of storage capacity in homeowner Pareto set increases with the size 
of PV system in order to increase the self-consumption of on-site produced electricity conse-
quently reducing the operational cost. 

8.4.3 Future-proof building designs with low grid dependency considering all policy sce-
narios 

Some design parameters can be replaced relatively easy at any time, such as the size of the 
electrical storage, while some other design parameters are not easy to change after the renova-
tion, such as the building insulation level. Accordingly, it is useful for the homeowner to under-
stand how robust each design option performs across the policy scenarios. This information is 
provided by calculating the performance regret for each solution. Figure 52 shows the influence 
of a chosen design parameter value on the predicted performance of the other homeowner Pareto 
set solutions.  

Figure 51 The boxplots show the performance spread for a design parameter value caused by 
variations in all the other design parameters and by the scenarios. The presented solutions are 
from the homeowner Pareto set. 
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Each boxplot show the performance spread for a design parameter value caused by variations in 
all the other design parameters and by the scenarios. For example, the first boxplot (RP1-STC) 
is the building design with Renovation Package 1 (RP1) equipped with a Solar Thermal Collec-
tor (STC) connected to the DHW system. The performance spread is caused by the variations in 
the remaining design parameters, in this case by the PV system sizes and the battery sizes. The 
figure shows that the performance regret of the operational cost decreases with larger sized PV 
systems and larger electrical storage capacities (bottom graph), which is because by the increase 
in utilization of on-site produced electricity. It can also be observed that designs with a gas boiler 
DHW system result in lower performance regrets across the considered scenarios for RP3 and 
RP4 in comparison to designs with solar DHW system. Designs with higher insulation level and 
lower infiltration rates have generally lower space heating demands, hence the share of energy 
consumption due to DHW demands are getting more weight in total energy consumptions. 
Hence, the designs with higher insulation level can get lower variations of operational cost and 
consequently lower operational cost regrets with gas boiler DHW system. 

Figure 52 The boxplots show the performance spread for a design parameter value caused by 
variations in all the other design parameters and by the scenarios. The presented solutions are 
from the EF Pareto set. 

 

The bottom graph of Figure 52 shows that designs with building envelope RP1 have larger var-
iations of the performance regret for operational cost compared to the designs with building 
envelope RP5. This indicates that the operational cost of RP5 is more robust across the consid-
ered scenarios. However, it requires higher additional investment costs compared to other pack-
ages (refer to top graph of Figure 52). The homeowner might prefer the building envelope RP2 
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equipped with a solar DHW system, which has similar regret variation as RP3 and RP4 without 
solar DHW, but it requires a lower additional investment cost. Considering variations in opera-
tional cost and corresponding performance regrets, the homeowner would prefer larger PV sys-
tems and larger electrical storage systems. 

Figure 53 shows the influence of a chosen design parameter value on the predicted performance 
of the other EF Pareto set solutions. Note that some design parameter values are not included in 
any of the Pareto solutions, e.g., the battery size of 0 kWh. The figure indicates that designs with 
intermediate insulation levels [2.5-4.5 m2K/W] result in a higher range of operational cost and 
higher operational cost regrets in comparison to same design options in the homeowner Pareto 
set. The EF Pareto solutions are equipped with electrical storage capacities of 5 kWh or higher. 
As mentioned low electrical storage capacities [0-2.5 kWh] are not included in this set of Pareto 
solutions. High electrical storage capacities are not as robust as in the homeowner Pareto set 
(compare to Figure 52). However, in the EF Pareto set the variations of operational cost and its 
corresponding regrets can be reduced with higher size of PV systems. As is shown in Figure 53, 
the larger PV systems result in very low performance regret for operational cost in expense of 
high investment costs. 

Overall, considering variations in operational cost and corresponding performance regrets, de-
signs with high insulation levels [8.5 m2K/W], large PV systems [25 m2] and high storage ca-
pacities [15 kWh] are dominating the EF Pareto set, however because of the high additional 
investment cost these solutions might not be the homeowner’s preferred design solutions. 

8.5 Conclusion 
This study presents a simulation based design optimization methodology in identifying energy 
flexible building designs. Energy flexibility is defined as the ability of a building to manage its 
load and generation in the way to increase self-consumption and reduce dependency to the en-
ergy grid. This methodology integrates uncertainties due to policy scenarios in multi criteria 
assessment to aid decision makers in selection of robust design options. 
 
The performance of the design space for different policy scenarios is assessed by using building 
performance simulations with multiple energy flexibility, performance indicators and corre-
sponding performance robustness. The methodology is demonstrated using a case study with a 
homeowner as decision maker.  

Results show that the proposed methodology provides a homeowner with information to trade 
off investment in improving building insulation levels with the other design options like electri-
cal storage and PV system. In addition, the homeowner can choose design options that are more 
robust to the preferred performance indicators.  

The proposed approach also provides the decision makers with information about the possible 
energy flexibility performance of the design space. As it is observed in this case study, energy 
flexible designs able to provide higher self-consumption and lower dependency to the grid are 
more expensive for homeowners specifically in policy scenarios providing incentives to sell on-
site produced energy. Considering variations in the operational cost due to different policy sce-
narios, designs with high insulation levels [8.5 m2K/W], large PV systems [25 m2] and high 
storage capacities [15 kWh] are dominating solutions obtained with self-consumption and grid 
dependency objectives. However, because of the high additional investment cost these solutions 
might not be the homeowner’s preferred design solutions. 
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Further work will aim at extending the proposed methodology to assess the performance of 
groups of residential buildings considering the energy flexibility potential in increasing local 
self-consumption and reducing grid dependency.  
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