

Chinese perspectives towards flexible energy buildings

Fulin Wang April 4, 2019 Tsinghua University flwang@Tsinghua.edu.cn

Contents

- China Energy Situations
- China Future Energy Roadmap
- A Novel Solution for Building Energy Flexibility: DC + Distributed Storage

Energy Consumption In China in 2016 (Billion TCE)

1 TCE (Ton Coal Equivalent) = 29.3 MJ

1. Chinese Current Energy Situations

Energy consumption per GDP (kgOE/constant 2010US\$)

1. Chinese Current Energy Situations

2. China Future Energy Roadmap

Energy Consumption Limitation

- Electricity : 10 trillion kWh/year
 - Production
 - ≻Thermal Power: 4.5
 - >Hydraulic power: 1.5
 - Nuclear power: 1.5
 - >Wind power: 1.5
 - >PV power: 1
 - Consumption
 - Building sector: 3
 - >Transportation: 2
 - Industry: 5

清華大学建筑技术科学系 DEPARTMENT OF BUILDING SCIENCE, TSINGHUA UNIVERSITY

- Fuel burning: 1.9 billion TCE/year
 - o Gas, Oil, Coal: 0.9
 - Bio-energy: 1.0
- Electricity proportion increases from 20% to 60%
- Renewable energy proportion increases from 26% to 55%

2. China Future Energy Roadmap

- Energy Technologies
 - District Heating
 - Utilize low-grade waste heat
 - > Thermal power plant
 - Industrial factory
 - Small amount of gas used for peak load
 - ➤ Long-distance, high-Δt thermal transportation
 - ✓ $\Delta t = 50^{\circ}$ C, thermal energy loss is 6% per 100km
 - ✓ $\Delta t = 100^{\circ}$ C, thermal energy loss is 3% per 100km

2. China Future Energy Roadmap

Energy Technologies

- Flexible Electricity System
 - Transport renewable energy from west to east
 - Hydraulic energy storage
 - Building DC power supply and distributed storage

3. Building DC power supply and distributed storage

Solution

Space-oriented DC power supply and distributed storage

Why DC power + battery?

- The advantage of DC transmission was re-recognized due to the progress of power electronics techniques.
- Advantages compared with AC power
 - Needs not DC/AC inverter: Less hardware cost and energy loss
 - Higher efficiency of DC/DC voltage conversion
 - Higher power quality: No overtones
 - Less power transmission loss

- Reduce investment cost of power plant and grid
 - Lower capacity

Benefits

- Reduce running cost by improved power generation efficiency
 - No low load operation

- Accept renewable energy as much as possible
 - No curtailment of solar power and wind power

建筑技术科学系

DEPARTMENT OF BUILDING SCIENCE, TSINGHUA UNIVERSITY

Curtailment of Renewable Energy in China in 2015

Benefits

- Save electricity bill for building owners
 - > Utilize time-of-use tariffs

Feasibility

- Almost all appliances in buildings use DC power
 - LCD monitor
 - LED lights
 - Computer, printer

- DC inverter driven air-conditioner
- DC inverter driven chiller
- Brushless DC motor and permanent magnet synchronous motor

Feasibility

- LBNL test-bed at a data center: Compared with AC power supply
 - Energy distribution efficiency improved by 7%
 - Equipment space saved by 33%
 - Hardware cost saved by 6%

OF BUILDING SCIENCE, TSINGHUA UNIVERSITY

Battery cost

- 0.5 CNY/kWh assuming a battery life of 1000 times charge/discharge
 - Cheaper than the grid electricity price.
- Tesla battery for home: PowerWall announced in 2015
 - Cost: 3500\$@10kWh for ten years' service, i.e. 0.13\$/kWh

Control strategy

emand response

ARTMEN

pil

Minimum

筑

DING SCIENCE

System design (Key parameters)

Control strategy development

Test and application (Quality, cost)

IEA EBC Annex

Constant power

Methodology

- Simulation
 - Different scenarios
 - Design optimization
- Experiment
 - Detailed study:
 - Performance
 - Efficiency
 - > Unexpected issues
- Demonstration
 - Actual building
 - True application

Battery Capacity Optimization

• Methodology

$$SOC(t) = \eta \int_{0}^{t} [P_{grid} - P_{load}(\xi) + P_{gen}(\xi)] d\xi$$

 $P_{load} = P_{AC} + P_{light} + P_{plug}$
 $Q_{bat} = \max_{i=1}^{365} \begin{bmatrix} 24 \\ \max_{t=1}^{24} SOC_{i}(t) - \min_{t=1}^{24} SOC_{i}(t) \end{bmatrix}$

SOC is state of charge of Battery;

 P_{grid} is the power taken from the grid;

*P*_{load} is the electricity load;

 P_{AC} is the electricity load of air-conditioning system; P_{light} is the electricity load of lighting system; P_{plug} is the electricity load of plug in devices; P_{gen} is the power generation;

 Q_{bat} is the battery capacity.

Simulation Study

Simulation Study

Simulation results

> Power from grid can be controlled within the range of $\pm 1W$.

Room	Battery voltage (V)	P _{set} (W)	Battery capacity (Ah)
1	48	1000	76
2	48	1047	84
3	48	1100	95
Sum	-	3147	255
if 第大学建筑技术科学系 DEPARTMENT OF BUILDING SCIENCE, TSINGHUA UNIVERSITY			

1 14 and the

DEPARTMENT OF BUILDING SCIENCE, TSINGHUA UNIVERSITY

-1911-

Experimental Study

Experimental test bed

Experimental Study

Loads, PV power generation, and battery SOC

Battery charge/discharge Power

Load Current

Preliminary results: Experiment

Control results

- > Average power from grid: 650.7W
- Standard deviation error: 1.1W AC/DC Convert

Power from Grid

Demonstration Buildings 1

- Low Carbon City located in Shenzhen, south China
 - Four- story
 - Floor area: 658 m²

Preliminary results: Demonstration

Facilities

an

直流电饭煲

Preliminary results: Demonstration

System structure

Demonstration Buildings 2

- Office building Guochen, Nanjing
 - 2400m² floor area
 - Designed building load 74kW
 - Equipped PV panel: 40kW

Demonstration Buildings 3

- Future Tower, Shenzhen
 - 4347m² floor area, 6 floors
 - Designed building load 250kW
 - Equipped PV panel: 260kW

Summary

- China Energy Situations
 - Total energy consumption: High
 - Energy consumption per GDP: High
 - Building energy consumption per m² and capita: Low
- China Future Energy Roadmap
 - Energy Consumption Limitation:
 - > Electricity:10 Trillion kWh/year
 - Fuel burning: 1.9 billion TCE/year
 - Future energy technologies
 - > District Heating: Utilize low-grade waste heat
 - Flexible Electricity System

Summary

- DC supply + Distributed Storage in buildings
 - Reduce investment cost of power plant and grid
 - Reduce running cost of power generation
 - Accept renewable energy without curtailment
 - Benefits for building owners
 - Save electricity bill by utilizing time-of-use tariffs
 - Save initial cost of power system by capacity cut
 - Save building space because of small size of DC components
 - Improve power quality, reliability and safety
 - > Reduce power line loss or save line costs

