Energy Flexible Buildings
IEA EBC Annex 67

Operating Agent
Søren Østergaard Jensen
Danish Technological Institute
sdj@teknologisk.dk

Seminar on Energy Flexible Buildings
Aalborg, April 4, 2019
Common understanding that we need to replace fossil fuels with renewable energy.
Example: Denmark
Goal: 50% wind in power grid by 2020 and only RES in the total energy system by 2050
Most buildings have the ability to become energy flexible.
Commercial buildings

ventilation systems

cooling systems

supermarkets

pumps
Electricity demand in households

- Heat pumps (aircondition)
- EVs
- Ventilation systems
- White goods
Prosumers
Definition of Energy Flexibility in buildings

The Energy Flexibility of a building is the ability to manage its demand and generation according to local climate conditions, user needs and grid requirements. Energy Flexibility of buildings will thus allow for demand side management/load control and thereby demand response based on the requirements of the surrounding grids.
European Union

Smartness Indicator in EBPD (Energy Performance in Buildings Directive)

- The introduction of a smartness indicator rating the readiness of the building to adapt its operation to the needs of the occupant and the grid, and to improve its performance

- The smartness indicator should be used to measure buildings’ capacity to use ICT and electronic systems to optimise operation and interact with the grid
Challange concerning Energy Flexibility of buildings

Currently there is, however, **still no real** overview or insight into how much Energy Flexibility different building types and their usage may be able to offer to future energy systems.

There is thus a need for increasing knowledge on and demonstration of the services Energy Flexible Buildings can provide for the energy grids as well to identify critical aspects and possible solutions to manage this Energy Flexibility.
IEA EBC Annex 67
Energy Flexible Buildings

June 2014 – June 2015: Preparation phase: done
June 2018 – June 2019: Reporting phase

Eight and final working meeting:
Aalborg, Denmark, April 3-5, 2019
Annex 67 work plan

Subtask A: Definitions and Context
- Common terminology and definition of Energy Flexibility in buildings
- Methodology for characterization of Energy Flexibility in buildings
- User needs, motivation and barriers for application of EF in building
- Market analysis

Subtask B: Analysis, Development and Testing
- Simulation of Energy Flexibility in single buildings and clusters of buildings
- Control strategies and algorithms
- Laboratory tests of components, systems and control strategies
- Example cases and design examples

Subtask C: Demonstration and User Perspectives
- Measurements in existing buildings
- Demonstration of Energy Flexibility in real buildings and clusters
- User motivation and acceptance
Participating countries

- Austria
- Belgium
- Canada
- China
- Denmark
- Finland
- France
- Germany
- Ireland
- Italy
- Norway
- Portugal
- Spain
- Switzerland
- The Netherlands
- UK
Output from Annex 67

• **Principles of Energy Flexible Buildings** summarizes the main findings of Annex 67 and targets all interested in what Energy Flexibility in buildings is, how it can be controlled, and which services it may provide.

• **Characterization of Energy Flexibility in Buildings** presents the terminology around Energy Flexibility, the existing indicators used to evaluate the flexibility potential and how to characterize and label Energy Flexibility.

• **Stakeholder perspectives on Energy Flexible buildings** displays the viewpoint of different types of stakeholders towards Energy Flexible Buildings.

• **Control strategies and algorithms for obtaining Energy Flexibility in buildings** reviews and evaluates control strategies for Energy Flexibility in buildings.

• **Experimental facilities and methods for assessing Energy Flexibility in buildings** describes several test facilities including experiments related to Energy Flexibility and draws recommendations for future testing activities.

• **Examples of Energy Flexibility in buildings** summarizes different examples on how to obtain Energy Flexible Buildings.

• **Project Summary Report** brief summary of the outcome of Annex 67.
Currently there is no overview or insight into how much Energy Flexibility different building types and their usage may be able to offer to future energy systems. The aim of the Annex is thus to increase knowledge on and demonstrate the Energy Flexibility buildings can provide for the energy grids, and to identify critical aspects and possible solutions to manage this Energy Flexibility.

In-depth knowledge of the Energy Flexibility that buildings may provide is important for the design of future Smart Energy systems and buildings. The knowledge is, however, not only important for the utilities it is also necessary for companies when developing business cases for products and services supporting the roll out of Smart Energy networks. Furthermore, it is important information for policy makers and government entities involved in the shaping of future energy systems.

Read more about Annex 67, click here
Thank you for your attention